Ir al contenido

Documat


Birkhoff coordinates for KdV on phase spaces of distributions

  • T. Kappeler [1] ; C. Möhr [1] ; P. Topalov [2]
    1. [1] University of Zurich

      University of Zurich

      Zürich, Suiza

    2. [2] Northeastern University

      Northeastern University

      City of Boston, Estados Unidos

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 11, Nº. 1, 2005, págs. 37-98
  • Idioma: inglés
  • DOI: 10.1007/s00029-005-0009-6
  • Enlaces
  • Resumen
    • The purpose of this paper is to extend the construction of Birkhoff coordinates for the KdV equation from the phase space of square integrable 1-periodic functions with mean value zero to the phase space H−10(T) of mean value zero distributions from the Sobolev space H−1(T) endowed with the symplectic structure (∂/∂x)−1. More precisely, we construct a globally defined real-analytic symplectomorphism Ω:H−10(T)→h−1/2 where h−1/2 is a weighted Hilbert space of sequences (xn,yn)n⩾1 supplied with the canonical Poisson structure so that the KdV Hamiltonian for potentials in H10(T) is a function of the actions ((x2n+y2n)/2)n⩾1 alone.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno