Ir al contenido

Documat


Very badly approximable matrix functions

  • V.V. Peller [1] ; S.R. Treil [2]
    1. [1] Michigan State University

      Michigan State University

      City of East Lansing, Estados Unidos

    2. [2] Brown University

      Brown University

      City of Providence, Estados Unidos

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 11, Nº. 1, 2005, págs. 127-154
  • Idioma: inglés
  • DOI: 10.1007/s00029-005-0001-1
  • Enlaces
  • Resumen
    • We study in this paper very badly approximable matrix functions on the unit circle T, i.e., matrix functions Φ such that the zero function is a superoptimal approximation of Φ. The purpose of this paper is to obtain a characterization of the continuous very badly approximable functions.

      Our characterization is more geometric than algebraic characterizations earlier obtained in [PY1] and [AP]. It involves analyticity of certain families of subspaces defined in terms of Schmidt vectors of the matrices Φ(ζ),ζ∈T. This characterization can be extended to the wider class of admissible functions, i.e., the class of matrix functions Φ such that the essential norm ||HΦ||e of the Hankel operator HΦ is less than the smallest nonzero superoptimal singular value of Φ.

      In the final section we obtain a similar characterization of badly approximable matrix functions.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno