Ir al contenido

Documat


The Århus integral of rational homology 3-spheres II: Invariance and universality

  • D. Bar-Natan [3] ; S. Garoufalidis [1] ; L. Rozansky [2] ; D.P. Thurston [4]
    1. [1] Brandeis University

      Brandeis University

      City of Waltham, Estados Unidos

    2. [2] University of Illinois at Chicago

      University of Illinois at Chicago

      City of Chicago, Estados Unidos

    3. [3] The Hebrew University, Institute of Mathematics, Israel
    4. [4] University of California at Berkeley, Department of Mathematics, USA
  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 8, Nº. 3, 2002, págs. 341-371
  • Idioma: inglés
  • DOI: 10.1007/s00029-002-8109-z
  • Enlaces
  • Resumen
    • We continue the work started in [Å-I], and prove the invariance and universality in the class of finite type invariants of the object defined and motivated there, namely the Århus integral of rational homology 3-spheres. Our main tool in proving invariance is a translation scheme that translates statements in multi-variable calculus (Gaussian integration, integration by parts, etc.) to statements about diagrams. Using this scheme the straightforward “philosophical” calculus-level proofs of [Å-I] become straightforward honest diagram-level proofs here. The universality proof is standard and utilizes a simple “locality” property of the Kontsevich integral.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno