Ir al contenido

Documat


Bifurcacions genériques d'atractors en sistemes de reacció i difusió

    1. [1] Universitat Autònoma de Barcelona

      Universitat Autònoma de Barcelona

      Barcelona, España

  • Localización: Publicacions matematiques, ISSN 0214-1493, Nº 24, 1981, págs. 73-162
  • Idioma: catalán
  • DOI: 10.5565/publmat_24181_02
  • Enlaces
  • Resumen
    • In this work we write down in some detail the bifurcation theory of stationary states of reaction-diffusion equations. First, we prove, adapting notes of looss on the Navier-Stokes equations, that under some weak hypothesis a reaction-diffusion equation defines a differentiable dynamical systems in the Sobolev space H2 with some boundary conditions . Then it is proven that a rest point where the infinitessimal generator of the linear part of the system has a spectrum in the left hand plane is stable . We prove then that when , depending on a parameter, a simple eigenvalue crosses to the right hand plane, a bifurcation appears (generically). In the last chapter we propose a model for dune formation, which does not have the pretension of being faithful, but which illustrates how the theory given is useful.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno