Ir al contenido

Documat


Stable solutions of semilinear elliptic problems in convex domains

  • X. Cabré [1] ; S. Chanillo [2]
    1. [1] Pierre and Marie Curie University

      Pierre and Marie Curie University

      París, Francia

    2. [2] Rutgers University

      Rutgers University

      City of New Brunswick, Estados Unidos

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 4, Nº. 1, 1998, págs. 1-10
  • Idioma: inglés
  • DOI: 10.1007/s000290050022
  • Enlaces
  • Resumen
    • In this note, we consider semilinear equations −Δu=f(u) , with zero Dirichlet boundary condition, for smooth and nonnegative f, in smooth, bounded, strictly convex domains of RN . We study positive classical solutions that are semi-stable. A solution u is said to be semi-stable if the linearized operator at u is nonnegative definite. We show that in dimension two, any positive semi-stable solution has a unique, nondegenerate, critical point. This point is necessarily the maximum of u. As a consequence, all level curves of u are simple, smooth and closed. Moreover, the nondegeneracy of the critical point implies that the level curves are strictly convex in a neighborhood of the maximum of u. Some extensions of this result to higher dimensions are also discussed.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno