Russel E. Caflisch, Nicholas Ercolani, Gregory Steele
Analysis and computations are presented for singularities in the solution of the steady Boussinesq equations for two-dimensional, stratified flow. The results show that for codimension 1 singularities, there are two generic singularity types for general solutions, and only one generic singularity type if there is a certain symmetry present. The analysis depends on a special choice of coordinates, which greatly simplifies the equations, showing that the type is exactly that of one dimensional Legendrian singularities, generalized so that the velocity can be infinite at the singularity. The solution is viewed as a surface in an appropriate compactified jet space. Smoothness of the solution surface is proved using the Cauchy-Kowalewski Theorem, which also shows that these singularity types are realizable. Numerical results from a special, highly accurate numerical method demonstrate the validity of this geometric analysis. A new analysis of general Legendrian singularities with blowup, i.e., at which the derivative may be infinite, is also presented, using projective coordinates.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados