Kita Ku, Japón
Machine learning is a very interesting and important branch of artificial intelligence. Among many learning models, the support vector machine is a popular model with high classification ability which can be trained by mathematical programming methods. Since the model was originally formulated for binary classification, various kinds of extensions have been investigated for multi-class classification. In this paper, we review some existing models, and introduce new models which we recently proposed. The models are derived from the viewpoint of multi-objective maximization of geometric margins for a discriminant function, and each model can be trained by solving a second-order cone programming problem. We show that discriminant functions with high generalization ability can be obtained by these models through some numerical experiments.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados