Ir al contenido

Documat


Different types of backward bifurcations on account of an improvement in treatment efficiency

  • Autores: Osvaldo Osuna, Shaday Guerrero Flores, Geiser Villavicencio Pulido
  • Localización: Integración: Temas de matemáticas, ISSN 0120-419X, Vol. 36, Nº. 1, 2018 (Ejemplar dedicado a: Revista Integración, temas de matemáticas), págs. 21-35
  • Idioma: inglés
  • DOI: 10.18273/revint.v36n1-2018002
  • Títulos paralelos:
    • Diferentes tipos de bifurcación hacia atrás a causa de una mejora en la eficiencia del tratamiento
  • Enlaces
  • Resumen
    • español

      Comprender por qué existen estados endémicos múltiples cuando R0 < 1 ha sido una de las principales motivaciones para analizar la existencia de una bifurcación hacia atrás en modelos epidemiológicos. La existencia de estados endémicos múltiples está asociada usualmente a ramas de puntos deequilibrio del sistema, las cuales pueden surgir ya sea desde el equilibrio libre de enfermedad si R0 = 1, o desde un equilibrio no trivial si R0 > 1. En este trabajo se analiza un modelo del tipo SIR con una tasa de tratamiento densodependiente. Se explica la naturaleza del punto de donde surge la bifurcación hacia atrás en función de la velocidad de la tasa de tratamiento per cápita. Se propondrán estrategias para el control o erradicación de la enfermedad en función de la eficiencia del tratamiento.

    • English

      Understanding why there are multiple equilibrium points when R0 < 1 has been one of the main motivations to analyze existence of a backward bifurcation in epidemiological models. Existence of multiple endemicstates is usually associated to branches of equilibrium points of the models, which could arise from either the disease-free equilibrium point if R0 = 1 or from an endemic equilibrium point if R0 > 1. In this work, an SIR model with a density-dependent treatment rate is analyzed. The nature of the point where backward bifurcation emerges is explained in function of the velocity of the per-capita treatment rate. Strategies for the control or eradication of the disease will be proposed in function of the efficiency of the treatment.

  • Referencias bibliográficas
    • Citas 1] Abu Bakar M.R., Garba A.M. and Gumel A.B.,“Backward bifurcation in dengue transmission dynamics”, Math. Biosci. 215 (2008), No....
    • [2] Brauer F., “Backward bifurcations in simple vaccination models”, J. Math. Anal. Appl. 298 (2004), No. 2, 418–431.
    • [3] Ghosh M., Li X. and Li W., “Stability and bifurcation of an epidemic model with nonlinear incidence and treatment”, Appl. Math. Comput....
    • [4] Gumel A.B., Elbasha E.H., Watmough J., Sharom O. and Podder C.N., “Role of incidence function in vaccine-induced backward bifurcation...
    • [5] Gumel A.B. and Sharomi O., “Re-infection-induced backward bifurcation in the transmission dynamics of chlamydia trachomatis”, J. Math....
    • [6] Hethcote H., “The mathematics of infectious diseases”, SIAM Rev. 42 (2000), No. 4, 599–653.
    • [7] Lacitignola D. and Buonomo B., “On the backward bifurcation of a vaccination model with nonlinear incidence”, Nonlinear Anal. Model. Control...
    • [8] Liu X. and Zhang X., “Backward bifurcation of an epidemic model with saturated treatment function”, J. Math. Anal. Appl. 348 (2008), No....
    • [9] Lou J., Song B. and and Du W., “Different types of backward bifurcation due to densitydependent treatments”, Math. Biosci. Eng. 10 (2013),...
    • [10] Moghadas S.M. and Alexander M.E., “Bifurcation analysis of an sirs epidemic model with generalized incidence”, SIAM J. Appl. Math. 65...
    • [11] Perelson A.S., Reluga T.C. and Medlock J., “Backward bifurcations and multiple equilibria in epidemic models with structured immunity”,...
    • [12] Song B. and Castillo-Chávez C., “Dynamical models of tuberculosis and their applications”, Math. Biosci. Eng. 1 (2004), No. 2, 361–404.
    • [13] Sun Z. and Liu Y., “Backward bifurcation in an hiv model with two target cells”, in Proceedings of the 29th Chinese Control Conference,...
    • [14] Van den Driessche P., Arino J. and McCluskey C.C., “Global results for an epidemic model with vaccination that exhibits backward bifurcation”,...
    • [15] Van den Driessche P. and Hadeler K.P., “Backward bifurcation in epidemic control”, Math. Biosci. 146 (1997), No. 1, 15–35.
    • [16] Velasco-Hernandez J.X. and Kribs-Zaleta C.M., “A simple vaccination model with multiple endemic states”, Math. Biosci. 164 (2000), No....
    • [17] Wan H., Cui J. and Mu X., “Saturation recovery leads to multiple endemic equilibria and backward bifurcation”, J. Theor. Biol. 254 (2008),...
    • [18] Wang W., “Backward bifurcation of an epidemic model with treatment”, Math. Biosci. 201 (2006), No. 1-2, 58–71.
    • [19] Wang H., Hu Z. and Liu S., “Backward bifurcation of an epidemic model with standard incidence rate and treatment rate”, Nonlinear Anal....
    • [20] Watmough J. and Van den Driessche P., “A simple sis epidemic model with a backward bifurcation”, J. Math. Biol. 40 (2000), No. 6, 525–540.
    • [21] Zheng B., Takeuchi Y., Wang J. and Liu S., “Qualitative and bifurcation analysis using an sir model with a saturated treatment function”,...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno