Ir al contenido

Documat


Inductive lattices of totally composition formations

  • Autores: Aleksandre Tsarev
  • Localización: Revista Colombiana de Matemáticas, ISSN-e 0034-7426, Vol. 52, Nº. 2, 2018, págs. 161-169
  • Idioma: inglés
  • DOI: 10.15446/recolma.v52n2.77156
  • Títulos paralelos:
    • Retículos inductivos de formaciones totalmente compositivas
  • Enlaces
  • Resumen
    • español

      Seaτun funtor de subgrupo de modo que todos los subgruposde cualquier grupo finitoGcontenido enτ(G) son subnormales enG. Eneste art ́ıculo, damos una demostraci ́on simple de que el ret ́ıculo de todas lasformaciones de composici ́on totalmenteτ-cerradas de los grupos finitos esinductivo.

    • English

      Letτbe a subgroup functor such that all subgroups of every finitegroupGcontained inτ(G) are subnormal inG. In this paper, we give a simpleproof of the fact that the lattice of allτ-closed totally composition formationsof finite groups is inductive.

  • Referencias bibliográficas
    • J. A. Cabrera and I. Gutiérrez-García, Sobre clases de grupos finitos solubles, Matemáticas: Enseñanza Universitaria XII (2004), no. 2, 53–68,...
    • K. Doerk and T. Hawkes, Finite soluble groups, De Gruyter Expositions in Mathematics, 4, Walter de Gruyter, Berlin, New York, 1992.
    • W. Gaschütz, Zur theorie der endlichen auflösbaren gruppen, Mathematische Zeitschrift 80 (1963), no. 4, 300–305.
    • W. Guo, Structure theory for canonical classes of finite groups, SpringerVerlag Berlin Heidelberg, 2015, 359 p.
    • W. Guo and A. N. Skiba, Two remarks on the identities of lattices of ω-local and ω-composition formations of finite groups, Russian Math. 46...
    • V. G. Safonov, On the modularity of the lattice of τ-closed totally saturated formations of finite groups, Ukrainian Math. Journal 58 (2006),...
    • V. G. Safonov, On a question of the theory of totally saturated formations of finite groups, Algebra Colloq. 15 (2008), no. 1, 119–128.
    • V. G. Safonov, On modularity of the lattice of totally saturated formations of finite groups, Comm. Algebra 35 (2011), no. 11, 3495–3502.
    • L. A. Shemetkov and A. N. Skiba, Formations of Algebraic Systems. Sovremennaya Algebra, Nauka, Moscow, 256 p. (in Russian), 1989.
    • A. N. Skiba, Algebra of formations, Belaruskaya Navuka, Minsk, 240 p. (in Russian), 1997.
    • A. N. Skiba and L. A. Shemetkov, Multiply L-composition formations of finite groups, Ukrainian Math. Journal 52 (2000), no. 6, 898–913.
    • A. Tsarev, Laws of the lattices of foliated formations of T-groups, Rend. Circ. Mat. Palermo, II. Ser., to appear. DOI: 10.1007/s12215-018-0369-3,...
    • A. Tsarev, On the maximal subformations of partially composition formations of finite groups, Bol. Soc. Mat. Mex., to appear. DOI: 10.1007/s40590-018-0205-y,...
    • A. Tsarev and N. N. Vorob'ev, Lattices of composition formations of finite groups and the laws, J. Algebra Appl. 17 (2018), no. 5, 1850084...
    • A. Tsarev, T. Wu, and A. Lopatin, On the lattices of multiply composition formations of finite groups, Bull. Int. Math. Virt. Institute (former...
    • A. A. Tsarev and N. N. Vorob'ev, On a question of the theory of partially composition formations, Algebra Colloq. 21 (2014), no. 3, 437–447.
    • N. N. Vorob'ev, On one question of the theory of local classes of finite groups, Problems in Algebra. Proc. F. Scorina Gomel State Univ....
    • N. N. Vorob'ev, On complete sublattices of formations of finite groups, Russian Math. 46 (2002), no. 5, 12–20.
    • N. N. Vorob'ev, Algebra of Classes of Finite Groups, P. M. Masherov Vitebsk State University, Vitebsk, 322 p. (in Russian), 2012.
    • N. N. Vorob'ev and A. N. Skiba, On the distributivity of the lattice of solvable totally local Fitting classes, Math. Notes 67 (2000),...
    • N. N. Vorob'ev, A. N. Skiba, and A. A. Tsarev, Laws of the lattices of partially composition formations, Siberian Math. Journal 62 (2018),...
    • N. N. Vorob'ev and A. A. Tsarev, On the modularity of a lattice of τclosed n-multiply ω-composition formations, Ukrainian Math. Journal,...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno