Ir al contenido

Documat


On the space-time admitting some geometric structures on energy-momentum tensors

  • Autores: Ajoy Mukharjee, Kanak Kanti Baishya
  • Localización: Revista Colombiana de Matemáticas, ISSN-e 0034-7426, Vol. 51, Nº. 2, 2017, págs. 259-269
  • Idioma: inglés
  • DOI: 10.15446/recolma.v51n2.70904
  • Títulos paralelos:
    • Sobre el espacio-tiempo admitiendo algunas estructuras geométricas en tensores de energía-momento
  • Enlaces
  • Referencias bibliográficas
    • Z. Ahsan, On a geometrical symmetry of the spacetime of genearal relativity, Bull. Cal. Math. Soc. 97 (2005), no. 3, 191-200.
    • R. Aikawa and Y. Matsuyama, On the local symmetry of Kaehler hyper-
    • surfaces, Yokohoma Math. J. 51 (2005), 63-73.
    • L. Amendola and S. Tsujikawa, Dark energy: theory and observations,
    • Cambridge University Press, 2010.
    • K. K. Baishya and P. Roy Chowdhury, On generalized quasi-conformal
    • n(k; u)-manifolds, Commun. Korean Math. Soc. 31 (2016), no. 1, 163-176.
    • M. C. Chaki and S. Roy, Spacetimes with covariant-constant energy-
    • momentum tensor, Internat. J. Theoret. Phys. 35 (1996), 1027-1032.
    • S. Chakraborty, N. Mazumder, and R. Biswas, Cosmological evolution
    • across phantom crossing and the nature of the horizon, Astrophys. Space
    • Sci. 334 (2011), 183-186.
    • U. C. De and L. Velimirovic, Spacetimes with semisymmetric energy-
    • momentum tensor, Internat. J. Theoret. Phys. 54 (2015), 17791783.
    • K. L. Duggal, Space time manifolds and contact structures, Int. J. Math.
    • Math. Sci. 13 (1990), 545-554.
    • L. P. Eisenhart, Riemannian geometry, Princeton University Press, 1949.
    • Y. Ishii, On conharmonic transformations, Tensor (N.S.) 7 (1957), 73-80.
    • B. O'Neill, Semi-Riemannian geometry, Academic Press Inc, New York,
    • G. P. Pokhariyal and R. S. Mishra, Curvature tensors and their relativistic significance, Yokohama Math. J. 18 (1970), 105-108.
    • H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers, and E. Herlt, Exact solutions of Einstein's field equations, 2nd ed., Cambridge...
    • Z. I. Szabó, Structure theorems on Riemannian spaces satisfying r(x; y).
    • r = 0. i. the local version, J. Differential Geom. 17 (1982), 531-582.
    • K. Yano and S. Bochner, Curvature and Betti numbers, Annals of Mathematics Studies 32, Princeton University Press, 1953.
    • K. Yano and S. Sawaki, Riemannian manifolds admitting a conformal
    • transformation group, J. Differential Geom. 2 (1968), 161-184.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno