Ir al contenido

Documat


Una función de Calibración construida a partir de puntos de cambio: Revisión

  • Autores: Ehidy Karime García, Juan Carlos Correa Morales Árbol académico, Juan Carlos Salazar Uribe Árbol académico
  • Localización: Comunicaciones en Estadística, ISSN 2027-3355, ISSN-e 2339-3076, Vol. 10, Nº. 1, 2017, págs. 113-128
  • Idioma: inglés
  • DOI: 10.15332/s2027-3355.2017.0001.06
  • Títulos paralelos:
    • Una función de calibración construida a partir de puntos de cambio: revisión
  • Enlaces
  • Resumen
    • español

      El problema de calibración no es reciente. Los trabajos en este tema fueron presentados inicialmente por Krutchkoff en la época de los 60, bajo un enfoque paramétrico y han sido ampliamente estudiados por otros autores desde diferentes perspectivas. Las investigaciones recientes respecto al punto de cambio han considerado supuestos adicionales y estimación usando modelos lineales mixtos. Se presenta una revisión exhaustiva de los problemas de calibración y punto de cambio. Adicionalmente, se puede observar que la vinculación de estos bajo el enfoque de modelos para datos longitudnales no ha sido trabajado.

    • English

      El problema de calibración no es reciente. Los trabajos en este tema fueron presentados inicialmente por Krutchkoff en la epoca de los 60's bajo un enfoque paramétrico y han sido ampliamente estudiados por otros autores desde diferentes enfoques. Las recientes investigaciones respecto al punto de cambio, han considerado supuestos adicionales y estimación usando modelos lineales mixtos. Se presenta una revisión exhaustiva de estos dos problemas y se puede observar que la vinculacion de estos no ha sido trabajado.  

  • Referencias bibliográficas
    • Bai, J. & Perron, P. (2003), Computation and analysis of multiple structural change models. Journal of applied econometrics 18(1), 1-22.
    • Benton, D., Krishnamoorthy, K. & Mathew, T. (2003), Inferences in multivariate and univariate calibration problems. Journal of the Royal...
    • Berkson, J. (1969), Estimation of a linear function for a calibration line: consideration of a recent proposal. Technometrics pp. 649-660.
    • Bhattacharya, P. (1994), Some aspects of change-point analysis. Lecture Notes-Monograph Series 23, 28 - 56.
    • Blankenship, E. E., Stroup, W. W., Evans, S. P. & Knezevic, S. Z. (2003), Statistical inference for calibration points in nonlinear mixed...
    • Environmental Statistics 8(4), 455-468.
    • Brown, G. (1979), An optimization criterion for linear inverse estimation. Technometrics 21(4), 575-579.
    • Brown, P. J. & Sundberg, R. (1989), Prediction diagnostics and updating in multivariate calibration.Biometrika 76(2), 349- 361.
    • Carlstein, E. (1988), Nonparametric change-point estimation. The Annals of Statistics 16(1), 188-197.
    • Carroll, R., Spiegelman, C. & Sacks, J. (1988), A quick and easy multiple-use calibration-curve procedure. Technometrics 30(2), 137-141.
    • Chen, J. and Gupta, A. K. (2000), Parametric Statistical Change Point Analysis. Birkhauser.
    • Cheng, C.-L. & Van Ness, J. W.(1997), Robust calibration. Technometrics 39(4), 401-411.
    • Chow, S.-C. & Shao, J. (1990), On the difference between the classical and inverse methods of calibration. Applied statistics 39(2), 219-228.
    • Concordet, D. & Nunez, O. G. (2000), Calibration for nonlinear mixed effects models: an application to the withdrawal time prediction....
    • Dahiya, R. C. & McKeon, J. J. (1991), Modied classical and inverse regression estimators in calibration. Sankhya: The Indian Journal of...
    • Darkhovski, B. S. (1994), Nonparametric methods in change-point problems: A general approach and some concrete algorithms. Lecture Notes-Monograph...
    • Dayanik, S., Poor, H. V. & Sezer, S. O. (2008), Multisource bayesian sequential change detection. The Annals of Applied Probability pp....
    • DeJong, D. N., Ingram, B. F. & Whiteman, C. H. (1996), A bayesian approach to calibration. Journal of Business & Economic Statistics...
    • Denham, M. & Brown, P. (1993), Calibration with many variables. Applied Statistics pp. 515-528.
    • Ding, K. & Karunamuni, R. J. (2004), A linear empirical bayes solution for the calibration problem. Journal of statistical planning and...
    • Farley, J. U. & Hinich, M. J. ( 1970), A test for a shifting slope coeficient in a linear model. Journalof the American Statistical Association...
    • Fornell, C., Rhee, B.-D. & Yi, Y. (1991), Direct regression, reverse regression, and covariance structure analysis. Marketing Letters...
    • Gruet, M.-A. (1996), A nonparametric calibration analysis. The Annals of Statistics 24(4), 1474-1492.
    • Halperin, M. (1970), On inverse estimation in linear regression. Technometrics 12(4), 727-736.
    • Hartigan, J. (1994), Linear estimators in change point problems. The Annals of Statistics 23, 824-834.
    • Harville, D. A. (1974), Bayesian inference for variance components using only error contrasts. Biometrika 61(2), 383-385.
    • Hoadley, B. (1970), A bayesian look at inverse linear regression. Journal of the American Statistical Association 65(329), 356-369.
    • Hofrichter, J. (2007), Change point detection in generalized linear models. Graz University of Technology.
    • doi:http://www.stat.tugraz.at/dthesis/Hofrichter07.pdf. Accessed on: 2015/04/22.
    • Hsing, T. (1999), Nearest neighbor inverse regression. Annals of statistics 27(2), 697-731.
    • Hunter, W. G. & Lamboy, W. F. (1981) ,A bayesian analysis of the linear calibration problem. Technometrics 23(4), 323-328.
    • Huskova, M. & Picek, J. (2005), Bootstrap in detection of changes in linear regression. Sankhya: The Indian Journal of Statistics pp....
    • Jackson, C. H. & Sharples, L. D. (2004), Models for longitudinal data with censored changepoints. Journal of the Royal Statistical Society:...
    • Jandhyala, V. & MacNeill, I. (1997), Iterated partial sum sequences of regression residuals and tests for changepoints with continuity...
    • (Statistical Methodology) 59(1), 147-156.
    • Kalotay, A. (1971), Structural solution to the linear calibration problem. Technometrics 13(4), 761-769.
    • Killick, R. & Eckley, I. (2014), changepoint: An R package for changepoint analysis. Journal of Statistical Software 58(3), 1-19.
    • Kimura, D. K. (1992), Functional comparative calibration using an EM algorithm. Biometrics,pp. 1263-1271.
    • Knaf, G., Spiegelman, C., Sacks, J. & Ylvisaker, D. (1984), Nonparametric calibration. Technometrics 26(3), 233-241.
    • Krutchkoff, R. (1967), Classical and inverse regression methods of calibration. Technometrics 9(3), 425-439.
    • Krutchkoff, R. (1969), Classical and inverse regression methods of calibration in extrapolation. Technometrics 11(3), 605-608.
    • Kuchenhoff, H. (1996), An exact algorithm for estimating breakpoints in segmented generalized linear models'. Online unter: http://epub.ub.uni-muenchen.de/
    • Lai, Y. & Albert, P. (2014), Identifying multiple change points in a linear mixed effects model. Statist. Med 33, 1015 - 1028. doi: 10.1002/sim.5996.
    • Lucy, D., Aykroyd, R. & Pollard, A. (2002), Nonparametric calibration for age estimation. Journal of the Royal Statistical Society: Series...
    • McCullagh, P. & Nelder, J. A. (1989), Generalized linear models, Vol. 2, Chapman and Hall London.
    • Minder, C. E. & Whitney, J. (1975), A likelihood analysis of the linear calibration problem. Technometrics 17(4), 463-471.
    • Muller, H.-G. ( 1992), Change-points in nonparametric regression analysis. The Annals of Statistics.20(2), 737-761.
    • Ns, T. (1985), Calibration when the error covariance matrix is structured. Technometrics 27(3), 301-311.
    • Naszodi, L. J. (1978) ,Elimination of the bias in the course of calibration. Technometrics 20(2), 201-205.
    • Neumann, M. H. (1997), Optimal change-point estimation in inverse problems. Scandinavian Journal of Statistics.24(4), 503-521.
    • Oden, A. (1973), Simultaneous confidence intervals in inverse linear regression. Biometrika. 60(2), 339-343.
    • Neumann, M. H. (1997), Optimal change-point estimation in inverse problems. Scandinavian Journal of Statistics 24(4), 503-521.
    • Oden, A. (1973), Simultaneous confidence intervals in inverse linear regression. Biometrika. 60(2), 339-343.
    • Oman, S. D. (1984), Analyzing residuals in calibration problems. Technometrics 26(4), 347-353.
    • Osborne, C. (1991), Statistical calibration: a review. International Statistical Review/Revue Internationale de Statistique 59(3), 309-336.
    • Perng, S. & Tong, Y. L. (1974) , A sequential solution to the inverse linear regression problem. The Annals of Statistics 2(3), 535-539.
    • Racine-Poon, A. (1988), A bayesian approach to nonlinear calibration problems. Journal of the American Statistical Association 83(403), 650-656.
    • Rao, C. R. (1973), Linear statistical inference and its applications, Vol. 2nd.Ed., John Wiley & Sons.
    • Rogers, A. N. (2010), A nonparametric method for ascertaining change points in regression regimes.
    • Roseneld, D., Zhou, E., Wilhelm, F. H., Conrad, A., Roth, W. T. & Meuret, A. E. (2010), Change point analysis for longitudinal physiological...
    • preceding panic attacks. Biological psychology 84(1), 112-120.
    • Saatci, Y., Turner, R. D. & Rasmussen, C. E. (2010), Gaussian process change point models.In`Proceedings of the 27th International...
    • Scheeffé, H. et al. (1973),A statistical theory of calibration. The Annals of Statistics 1(1), 1-37.
    • Schwenke, J. R. & Milliken, G. A. (1991), On the calibration problem extended to nonlinear models. Biometrics 47(2), 563-574.
    • Shukla, G. (1972), On the problem of calibration. Technometrics 14(3), 547-553.
    • Srivastava, V. & Singh, N. (1989), Small-disturbance asymptotic theory for linear-calibration estimators. Technometrics 31(3), 373-378.
    • Sundberg, R. (1999), Multivariate calibration: direct and indirect regression methodology. Scandinavian Journal of Statistics 26(2), 161-207.
    • Trout, J. R. & Swallow, W. H. (1979), Regular and inverse interval estimation of individual observations using uniform confidence bands....
    • Wang, C., Hsu, L., Feng, Z. & Prentice, R. L. (1997), Regression calibration in failure time regression.Biometrics pp. 131-145.
    • Wu, W. B.,Woodroofe, M. & Mentz, G. (2001), Isotonic regression: Another look at the changepoint problem. Biometrika 88(3), 793-804.
    • Zhou, H., Liang, K.-Y. et al. (2008) On estimating the change point in generalized linear models, in `Beyond Parametrics in Interdisciplinary...
    • K. Sen', Institute of Mathematical Statistics, pp. 305-320.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno