Ir al contenido

Documat


Poisson excess relative risk models: new implementations and software

  • Manuel Higueras [1] ; Adam Howes [2]
    1. [1] Universidad de La Rioja

      Universidad de La Rioja

      Logroño, España

    2. [2] Basque Center for Applied Mathematics

      Basque Center for Applied Mathematics

      Bilbao, España

  • Localización: Sort: Statistics and Operations Research Transactions, ISSN 1696-2281, Vol. 42, Nº. 2, 2018, págs. 237-252
  • Idioma: inglés
  • DOI: 10.2436/20.8080.02.76
  • Enlaces
  • Resumen
    • Two new implementations for fitting Poisson excess relative risk methods are proposed for as- sumed simple models. This allows for estimation of the excess relative risk associated with a unique exposure, where the background risk is modelled by a unique categorical variable, for example gender or attained age levels. Additionally, it is shown how to fit general Poisson linear relative risk models in R. Both simple methods and the R fitting are illustrated in three examples.

      The first two examples are from the radiation epidemiology literature. Data in the third example are randomly generated with the purpose of sharing it jointly with the R scripts.

  • Referencias bibliográficas
    • Committee to Assess Health Risks from Exposure to Low Levels of Ionizing Radiation (2006). Health Risks from exposure to low levels of ionizing...
    • Christensen, R., Johnson, W., Brasncum, A. and Hanson, T.E. (2011). Bayesian Ideas and Data Analysis: An Introduction for Scientists and Statisticians....
    • Grant, E.J., Brenner, A., Sugiyama, H., Sakata, R., Sadakane, A., Utada, M., Cahoon, E. K., Milder, C. M., Soda, M., Cullings, H. M., Preston,...
    • Harbron, R.W., Chapple, C.-L., O’Sullivan, J.J., Lee, C, McHugh, K., Higueras, M. and Pearce, M.S. (2018). Cancer incidence among children...
    • Henningsen, A. and Toomet, O. (2011). maxLik: A package for maximum likelihood estimation in R. Computational Statistics, 26(3), 443–458.
    • Journy, N., Rehel, J.-L., Ducou Le Pointe, H., Lee, C., Brisse, H., Chateil, J.-F., Caer-Lorho, S., Laurier, D. and Bernier, M.-O. (2015)....
    • McCullagh, P. and Nelder, J. (1989). Generalized Linear Models, 2nd edition. Boca Raton: Champman & Hall/CRC Press.
    • Morinña, D. (2016). linERR: Linear Excess Relative Risk Model, version 1.0, URL: https://CRAN.Rproject.org/package=linERR.
    • Pearce, M.S., Salotti, J.A., Little, M.P., Mchugh, K., Lee, C., Kim, K.P., Howe, N.L., Ronckers, C.M., Rajaraman, P., Craft, A.W., Parker,...
    • Plummer, M. (2003). JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. Preston, D.L., Lubin, J.H., Pierce, D.A....
    • Hirosoft International Corporation. R Core Team (2017). R: A language and environment for statistical computing. Vienna: R Foundation for
    • Statistical Computing. URL https://www.R-project.org/. Richardson, D.B. (2008). A simple approach for fitting linear relative rate models...
    • Therneau, T. (2015). A Package for Survival Analysis in S, version 2.38, URL: https://CRAN.R-project.org/ package=survival.
    • Turner, H. and Firth, D. (2018). Generalized nonlinear models in R: An overview of the gnm package, version 1.1-0, URL: https://cran.r-project.org/package=gnm.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno