Ir al contenido

Documat


A new tool for failure analysis in small firms: frontiers of financial ratios based on percentile differences (PDFR)

  • María T. Tascón [1] ; Francisco J. Castaño [1] ; Paula Castro [1]
    1. [1] Universidad de León

      Universidad de León

      León, España

  • Localización: Revista española de financiación y contabilidad, ISSN 0210-2412, Vol. 47, Nº 4, 2018, págs. 433-463
  • Idioma: inglés
  • DOI: 10.1080/02102412.2018.1468058
  • Títulos paralelos:
    • Una nueva herramienta para análisis de fracaso en empresas pequeñas: fronteras de ratios financieras basadas en diferencias de percentiles (PDFR)
  • Enlaces
  • Resumen
    • español

      Este documento propone una metodología innovadora que usa diferencias entre percentiles para calcular puntuaciones y distancias al fracaso de empresas o grupos de empresas. Se basa en las diferencias significativas entre el grupo de empresas fracasadas y la población a la que ese grupo pertenece (mismo sector, periodo y zona geográfica seleccionados) y elimina los efectos de la correlación entre los factores empleados para calcular las puntuaciones. El uso de ratios contables, que pueden calcularse con los datos disponibles en los estados financieros obligatorios, y la homogeneización de estas variables mediante el cálculo de percentiles, hacen del PDFR una herramienta especialmente orientada a las PyMEs. Nuestros resultados para la selección de las variables más discriminantes son consistentes con los obtenidos en estudios previos, y las tasas de acierto de empresas fracasadas y no fracasadas son mejores que las de metodologías tradicionales usadas habitualmente. Además, la metodología propuesta permite calcular distancias al fracaso tanto de empresas individuales como de grupos de empresas. Finalmente, esta metodología identifica cuáles de los inductores financieros utilizados muestran fortalezas o debilidades de la empresa o grupo de empresas, a efectos de una potencial reorganización.

    • English

      This paper proposes an innovative methodology based on the use of differences between percentiles to compute the scores and distances to failure of a specific firm or group of firms. This approach is based on significant differences between the group of failed firms and the population to which the failed firms belong (meaning the same industry, period and geographical zone selected) and eliminates the effects of correlation between the factors selected to compute the scores. The use of accounting ratios, which can be computed using data available in the mandatory financial statements, and the homogenisation of these variables using percentiles make percentile difference frontier of ratios a tool specially oriented to small and medium-sized enterprises (SMEs). Our results for the selection of the most discriminant variables are consistent with those of previous studies, and the hit rates of failed and non-failed firms outperform those of the commonly used traditional methodologies. In addition, the proposed methodology enables us to compute distances to failure of both individual firms and groups of firms. Finally, this methodology identifies which of the financial drivers used are strengths or weaknesses for the specific firm or group of firms under study for purposes of a potential reorganisation.

  • Referencias bibliográficas
    • Alfaro, E., Gámez, M., García, N., & Elizondo, D. (2008). Bankruptcy forecasting: An empirical comparison of AdaBoost and neural networks....
    • Altman, E. I. (1968). Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. The Journal of Finance, 23(4), 568–609.
    • Altman, E. I., & Sabato, G. (2005). Effects of the new Basel capital accord on bank capital requirements for SMEs. Journal of Financial...
    • Altman, E. I., & Sabato, G. (2007). Modeling credit risk for SMEs: Evidence from the U.S. market. Abacus, 43(3), 332–357.
    • Altman, E. I., Sabato, G., & Wilson, N. (2008). The value of qualitative information in SME risk management. Working Paper. Leonard N....
    • Aziz, M. A., & Dar, H. A. (2006). Predicting corporate bankruptcy: Where we stand? Corporate Governance, 6(1), 18–33.
    • Baixauli, J. S., & Módica-Milo, A. (2010). The bias of unhealthy SMEs in bankruptcy prediction models. Journal of Small Business and Enterprise...
    • Banks, W. J., & Prakash, L. A. (1994). On the performance of linear programming heuristics applied on a quadratic transformation in the...
    • Beaver, W. H. (1966). Financial ratios as predictors of failure. Journal of Accounting Research, 4, 71–111. January.
    • Behr, P., & Güttler, A. (2007). Credit risk assessment and relationship lending: An empirical analysis of German small and medium-sized...
    • Bell, T. B., Ribar, G. S., & Verchio, J. (1990). Neural nets versus logistic regression: A comparison of each model’s ability to predict...
    • Bellovary, J. L., Giacomino, D. E., & Akers, M. D. (2007). A review of bankruptcy prediction studies: 1930 to present. Journal of Financial...
    • Bharath, S. T., & Shumway, T. (2008). Forecasting default with the Merton distance to default model. The Review of Financial Studies,...
    • Bryant, S. M. (1997). A case-based reasoning approach to bankruptcy prediction modeling. Intelligent Systems in Accounting, Finance and Management,...
    • Castaño, F. J., & Tascón, M. T. (2012, May 9–11). Selection of variables in business failure analysis: Mean selection vs. median selection....
    • Cochran, B. (1986). Small business mortality rates: A review of the literature. Journal of Small Business Management, 19(4), 50–59.
    • Cook, G. A. S., Pandit, N. R., & Milman, D. (2012). A resource-based analysis of bankruptcy law, SMEs and corporate recovery. International...
    • Dannreuther, C., & Kessler, O. (2010). Small firm finance and the political economy of risk. London: Routledge.
    • Daubie, M., & Meskens, N. (2002). Business failure prediction: A review and analysis of the literature. In C. Zopounidis (Ed.), New trends...
    • Davydenko, S. A., & Franks, J. R. (2008). Do bankruptcy codes matter? A study of defaults in France, Germany, and the U.K. The Journal...
    • Dietsch, M., & Petey, J. (2002). The credit risk in SME loans portfolios: Modeling issues, pricing, and capital requirements. Journal...
    • Dietsch, M., & Petey, J. (2004). Should SME exposures be treated as retail or corporate exposures? A comparative analysis of default probabilities...
    • Dimitras, A., Zanakis, S., & Zopounidis, C. (1996). A survey of business failures with an emphasis on failure prediction methods and industrial...
    • Du Jardin, P. (2015). Bankruptcy prediction using terminal failure processes. European Journal of Operational Research, 242(1), 286–303.
    • Du Jardin, P., & Séverin, E. (2012). Forecasting financial failure using a Kohonen map: A comparative study to improve model stability...
    • Edmister, R. O. (1972). An empirical test of financial ratio analysis for small business failure prediction. Journal of Financial and Quantitative...
    • Franks, J. R., & Torous, W. N. (1992). Lessons from a comparison of US and UK insolvency codes. Oxford Review of Economic Policy, 8(3),...
    • Gill De Albornoz, B., & Giner, B. (2010). El fracaso empresarial en los sectores inmobiliario y de la construcción. 2008-2009. In B. Gill...
    • Headd, B. (2003). Redefining business success: Distinguishing between closure and failure. Small Business Economics, 21(1), 51–61.
    • Jessen, C., & Lando, D. (2015). Robustness of distance-to-default. Journal of Banking & Finance, 50(1), 493–505.
    • Labatut, G., Pozuelo, J., & Veres, E. J. (2009). Time modelling of the accounting ratios for detection of management failure in Spanish...
    • Laitinen, E. K. (2008). Data system for assessing probability of failure in SME reorganization. Industrial Management and Data Systems, 108(7),...
    • Lincoln, M. (1984). An empirical study of the usefulness of accounting ratios to describe levels of insolvency risk. Journal of Banking and...
    • López, J., Gandía, J. L., & Molina, R. (1998). La suspensión de pagos en las pymes: Una aproximación empírica. Spanish Journal of Finance...
    • Mar Molinero, C., & Ezzamel, M. (1991). Multidimensional scaling applied to corporate failure. Omega, 19(4), 259–274.
    • Marais, M., Patell, J., & Wolfson, M. (1984). The experimental design of classification models: An application of recursive partitioning...
    • Martin, D. (1977). Early warning of bank failure. Journal of Banking and Finance, 1(3), 249–276.
    • Merton, R. C. (1974). On the pricing of corporate debt: The risk structure of interest rates. The Journal of Finance, 29(2), 449–470.
    • Paradi, J. C., Asmild, M., & Simak, P. C. (2004). Using DEA and worst practice DEA in credit risk evaluation. Journal of Productivity...
    • Park, C. S., & Han, I. (2002). A case-based reasoning with the feature weights derived by analytic hierarchy process for bankruptcy prediction....
    • Pompe, P. P. M., & Bilderbeek, J. (2005). The prediction of bankruptcy of small and medium sized industrial firms. Journal of Business...
    • Premachandra, I. M., Bhabra, G. S., & Sueyoshi, T. (2009). DEA as a tool for bankruptcy assessment: A comparative study with logistic...
    • Psillaki, M., Tsolas, I. E., & Margaritis, D. (2010). Evaluation of credit risk based on firm performance. European Journal of Operational...
    • Ravi Kumar, P., & Ravi, V. (2007). Bankruptcy prediction in banks and firms via statistical and intelligent techniques – A review. European...
    • Serrano Cinca, C. (1996). Self organizing neural networks for financial diagnosis. Decision Support Systems, 17(3), 227–238.
    • Shin, K. S., & Lee, Y. J. (2002). A genetic algorithm application in bankruptcy prediction modeling. Expert Systems with Applications,...
    • Sueyoshi, T., & Goto, M. (2009). DEA–DA for bankruptcy-based performance assessment: Misclassification analysis of Japanese construction...
    • Sun, J., Li, H., Huang, Q.-H., & He, K.-Y. (2014). Predicting financial distress and corporate failure: A review from the state-of-the-art...
    • Sun, L., & Shenoy, P. P. (2007). Using Bayesian networks for bankruptcy prediction: Some methodological issues. European Journal of Operational...
    • Tascón, M. T., & Castaño, F. J. (2012). Variables and models for the identification and prediction of business failure: Revision of recent...
    • Watson, J., & Everett, J. (1996). Do small business have high failure rates? Journal of Small Business Management, 34(4), 45–52.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno