Ir al contenido

Documat


Lp -bounds on spectral clusters associated to polygonal domains

  • Matthew D. Blair [1] ; G. Austin Ford [2] ; Jeremy L. Marzuola [3]
    1. [1] University of New Mexico

      University of New Mexico

      Estados Unidos

    2. [2] AltSchool
    3. [3] University of North Carolina
  • Localización: Revista matemática iberoamericana, ISSN 0213-2230, Vol. 34, Nº 3, 2018, págs. 1071-1091
  • Idioma: inglés
  • DOI: 10.4171/RMI/1016
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We look at the Lp bounds on eigenfunctions for polygonal domains (or more generally Euclidean surfaces with conic singularities) by analysis of the wave operator on the flat Euclidean cone C(S1ρ)=defR+×(R/2πρZ) of radius ρ>0 equipped with the metric h(r,θ)=dr2+r2dθ2. Using explicit oscillatory integrals and relying on the fundamental solution to the wave equation in geometric regions related to flat wave propagation and diffraction by the cone point, we can prove spectral cluster estimates equivalent to those in works on smooth Riemannian manifolds.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno