Ir al contenido

Documat


Construcáo de solucóes solitónicas das equacóes de Einstein

  • Autores: Guillermo A. Gonzàlez
  • Localización: Integración: Temas de matemáticas, ISSN 0120-419X, Vol. 19, Nº. 1, 2001, págs. 23-36
  • Idioma: portugués
  • Enlaces
  • Resumen
    • Se faz o estudo do Método do Espalhamento Inverso para a construcáo de solucóes das equacóes de Einstein no vazio. A construcáo de solucóes para o caso no qual a solugáo particular é urna métrica diagonal é apresentada brevemente. Finalmente, expressoes explícitas para solucóes com dois sólitons sao apresentadas.

  • Referencias bibliográficas
    • Citas [1] Kramer, D., Stephani, H., Herlt, E. and McCallum, M.Exact Solutions ofEinstein’s Field Equations. (Cambridge University Press,...
    • [2] Belinsky, V. A. and Zakharov, V. E. “Integration of the Einstein Equations bymeans of the Inverse Scattering Technique and Construction...
    • [3] Belinsky, V. A. and Zakharov, V. E. “Stationary Gravitational Solitons withAxial Symmetry”.Zh. Eksp. Teor. Fis.77, 3 (1979). [Sov. Phys....
    • [4] Chaudhuri, S. and Das, K. C.Two-soliton Solutions of Axially SymmetricMetrics. Gen. Rel. Grav. 29, 75 (1997).[5] Letelier, P. S. “Cylindrically...
    • [6] Letelier, P. S. “Static and Stationary Multiple Soliton Solutions to the EinsteinEquations”.J. Math. Phys.26, 467 (1985).
    • [7] Letelier, P. S. “Soliton Solutions to the Vacuum Einstein Equations Obtainedfrom a Nondiagonal Seed Solution”.J. Math. Phys.27, 564 (1986).
    • [8] Letelier, P. S.On Soliton Solutions to the Vacuum Einstein Equations Obtainedfrom a General Seed Solution. Class. Quantum Grav. 6, 875...
    • [9] Letelier, P. S. and Oliveira, S. R. “Exact Selfgraviting Disks and Rings: aSolitonic Approach”.J. Math. Phys.28, 165 (1987).
    • [10] McCrea, J. D. “Static Axially Symmetric Gravitational Fields with Shell Sources”.J. Phys.A9, 697 (1976).
    • [11] Weyl, H.Zur Gravitationstheorie. Ann. Physik 54, 117 (1917).
    • [12] Weyl, H.Bemerkung ̈Uber die Axialsymmetrischen L ̈osungen der Einstein-schen Gravitationsgleichungen. Ann. Physik 59, 185 (1919).
    • [13] Zipoy, D. M. “Topology of Some Spheroidal Metrics”.J. Math. Phys. 7, 1137(1966).
    • [14] Voorhees, B. H. “Static Axially Symmetric Gravitational Fields”.Phys. Rev.D2, 2119 (1970).
    • [15] Bonnor, W. B. and Sackfield, A. “The Interpretation of Some Spheroidal Met-rics”.Comm. Math. Phys.8, 338 (1968).
    • [16] Chazy, J. “Sur le Champ de Gravitation de Deux Masses Fixes dans la Th ́eoriede la Relativit ́e”.Bull. Soc. Math. France.52, 17 (1924).
    • [17] Curzon, H. E. J. “Cylindrical Solutions of Einstein’s Gravitation Equations”.Proc. London Math. Soc.23, 477 (1924).
    • [18] Demia ́nski, M. and Newmann, E. T. “A Combined Kerr-NUT Solution of theEinstein Field Equations”.Bull. Acad. Polon. Sci. Ser. Math. Astron....
    • [19] Newmann, E., Tamburino, L. and Unti, T. “Empty-Space Generalization ofthe Schwarzschild Metric”.J. Math. Phys.4, 915 (1963).

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno