Ir al contenido

Documat


On Intervals, Sensitivity Implies Chaos

  • Autores: Héctor Méndez Lango
  • Localización: Integración: Temas de matemáticas, ISSN 0120-419X, Vol. 21, Nº. 1-2, 2003, págs. 15-23
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this note we investigate which properties can be derived for a continuous function f defined on an interval I if the only a priori given information is its sensitive dependence on initial conditions. Our main result is the following: If f is sensitive, then f is chaotic, in the sense of Devaney, on a nonempty interior subset of I; the set of aperiodic points is dense in I as well as the set of asintotically periodic points; moreover, f has positive topological entropy. 

  • Referencias bibliográficas
    • Citas [1]Banks J., Brooks J., Cairns G., Davis G.andStacey P.“On Devaney’sDefinition of Chaos”,Amer. Math. Monthly, 1992, 332–334.
    • [2]Block L. S.andCoppel W. A.Dynamics in One Dimension, Lecture Notesin Math. 1523, Springer Verlag, 1991.
    • [3]Devaney R. L.An Introduction to Chaotic Dynamical Systems, AddisonWesley, 1989.[4]Hocking J. G.andYoung G. S.Topology,Dover Publications,...
    • [5]Méndez-Lango H.“Las Quebraditas (propiedades dinámicas de una pecu-liar familia de funciones en el intervalo)”,Miscelánea Matemática,35(2002),59–71.
    • [6]Misiurewicz M.“Invariant Measures for Continuous Transformations of[0,1]with Zero Topological Entropy”,Lecture Notes in Math.,729(1980),...
    • [7]Nitecki Z.Topological Dynamics on the Interval, Ergodic Theory andDynamical Systems II, Proc. Special Year, Maryland, 1979-1980 (A. Katoked.)...
    • [8]Vellekook M.andBerglund R.“On Intervals, Transitivity=Chaos”,Amer. Math. Monthly,101(1994), 353–355.
    • [9]Walters P.,An Introduction to Ergodic Theory, Graduate Texts in Math.,79, Springer Verlag, 1982.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno