Eusebio Calonge, Maite Martín, Thierry Etchegoyhen , Eva María Martínez García, Andoni Azpeitia Zaldua, Iñaki Alegría Loinaz , Gorka Labaka Intxauspe , Arantxa Otegi Usandizaga , Kepa Sarasola Gabiola , Itziar Cortés Etxabe, Amaia Jauregi Carrera, Igor Ellakuria
La estimación automática de calidad (EAC) de la traducción automática consiste en medir la calidad de traducciones sin acceso a referencias humanas, habitualmente mediante métodos de aprendizaje automático. Un buen sistema EAC puede ayudar en tres aspectos del proceso de traducción asistida por medio de traducción automática y posedición: aumento de la productividad (descartando traducciones automáticas de mala calidad), estimación de costes (ayudando a prever el coste de posedición) y selección de proveedor (si se dispone de varios sistemas de traducción automática). El interés en este campo de investigación ha crecido significativamente en los últimos años, dando lugar a tareas compartidas a nivel mundial (WMT) y a una fuerte actividad científica. En este artículo, se hace un repaso del estado del arte en este área y se presenta el proyecto QUALES que se está realizando.
The automatic quality estimation (QE) of machine translation consists in measuring the quality of translations without access to human references, usually via machine learning approaches. A good QE system can help in three aspects of translation processes involving machine translation and post-editing: increasing productivity (by ruling out poor quality machine translation), estimating costs (by helping to forecast the cost of post-editing) and selecting a provider (if several machine translation systems are available). Interest in this research area has grown significantly in recent years, leading to regular shared tasks in the main machine translation conferences and intense scientific activity. In this article we review the state of the art in this research area and present project QUALES, which is under development.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados