Ir al contenido

Documat


On Reich type λ−α-nonexpansive mapping in Banach spaces with applications to L1([0,1])

  • Autores: Rabah Belbaki, E. Karapinar, Amar Ould Hammouda
  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 19, Nº. 2, 2018, págs. 291-305
  • Idioma: inglés
  • DOI: 10.4995/agt.2018.10213
  • Enlaces
  • Resumen
    • In this manuscript we introduce a new class of monotone generalized nonexpansive mappings and establish some weak and strong convergence theorems for Krasnoselskii iteration in the setting of a Banach space with partial order. We consider also an application to the space L1([0,1]). Our results generalize and unify the several related results in the literature.

  • Referencias bibliográficas
    • K. Aoyama and F. Kohsaka, Fixed point theorem for α-nonexpansive mappings in Banach spaces, Nonlinear Anal. 74 (2011), 4387-4391. https://doi.org/10.1016/j.na.2011.03.057
    • J.-B. Baillon, Quelques aspects de la théorie des points fixes dans les espaces de Banach. I, II. In : Séminaire d'analyse fonctionnelle...
    • H. Brezis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Am. Math. Soc. 88, no....
    • F. E. Browder, Nonexpansive nonlinear operators in a Banach space, Proc. Natl. Acad. Sci. USA 54 (1965) 1041-1044. https://doi.org/10.1073/pnas.54.4.1041
    • F. E. Browder, Fixed-point theorems for noncompact mappings in Hilbert space, Proc. Natl. Acad. Sci. USA 53 (1965), 1272-1276. https://doi.org/10.1073/pnas.53.6.1272
    • J. B. Diaz and F. T. Metcalf, On the structure of the set of subsequential limit points of successive approximations, Bull. Am. Math. Soc.73...
    • J. G. Falset, E. L. Fuster and T. Suzuki, Fixed point theory for a class of generalized nonexpansive mappings, J. Math. Anal. Appl. 375 (2011),...
    • K. Goebel and W. A. Kirk, Iteration processes for nonexpansive mappings, Contemp. Math. 21 (1983), 115-123. https://doi.org/10.1090/conm/021/729507
    • K. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory. Cambridge Studies in Advanced Mathematics, vol. 28, p.244. Cambridge University...
    • D. Gohde, Zum prinzip der dertraktiven abbildung, Math. Nachr. 30 (1965), 251-258. https://doi.org/10.1002/mana.19650300312
    • J. P. Gossez and E. Lami Dozo, Some geometric properties related to the fixed point theory for nonexpansive mappings, Pacific J. Math. 40...
    • E. Karapinar, Remarks on Suzuki (C)-condition, dynamical systems and methods, Springer-Verlag New York, 2012, Part 2, 227-243.
    • E. Karapinar and K. Tas, Generalized (C)-conditions and related fixed point theorems, Comput. Math. Appl. 61, no. 11 (2011), 3370-3380. https://doi.org/10.1016/j.camwa.2011.04.035
    • M. A. Khamsi, and A. R. Khan, On monotone nonexpansive mappings in L1[0,1]. Fixed point theory Appl. 2015, Article ID 94 (2015). https://doi.org/10.1186/s13663-015-0346-x
    • W. A. Kirk, A fixed point theorem for mappings which do not increase distances, Am. Math. Mon. 72 (1965), 1004-1006. https://doi.org/10.2307/2313345
    • W. A. Kirk, Krasnoselskii's iteration process in hyperbolic space, Numer. Func. Anal. Opt. 4, no. 4 (1982), 371-381. https://doi.org/10.1080/01630568208816123
    • Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591-597....
    • R. Shukla, R. Pant and M. De la Sen, Generalized $alpha$-nonexpansive mappings in Banach spaces, Fixed Point Theory and Applications (2017)...
    • Y. Song, K. Promluang, P. Kuman and Y. Je Cho, Some convergence theorems of the Mann iteration for monotone α-nonexpansive mappings, Appl....
    • T. Suzuki, Fixed point theorems and convergence theorems for some generalized nonexpansive mappings, J. Math. Anal. Appl. 340, no. 2 (2008),...
    • D. van Dulst, Equivalent norms and the fixed point property for nonexpansive mappings, J. London Math. Soc. 25 (1982), 139-144.
    • https://doi.org/10.1112/jlms/s2-25.1.139
    • P. Veeramani, On some fixed point theorems on uniformly convex Banach spaces, J. Math. Anal. Appl. 167 (1992), 160-166. https://doi.org/10.1016/0022-247X(92)90243-7

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno