Ir al contenido

Documat


The depth and LS category of a topological space

  • Yves Félix [1] ; Steve Halperin [2]
    1. [1] Université Catholique de Louvain

      Université Catholique de Louvain

      Arrondissement de Nivelles, Bélgica

    2. [2] University of Maryland (Estados Unidos)
  • Localización: Mathematica scandinavica, ISSN 0025-5521, Vol. 123, Nº 2, 2018, págs. 220-238
  • Idioma: inglés
  • DOI: 10.7146/math.scand.a-106920
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • The depth of an augmented ring ε:A→k is the least p, or ∞, such that \begin {equation*} \Ext _A^p(k , A)\neq 0. \end {equation*} When X is a simply connected finite type CW complex, H∗(ΩX;Q) is a Hopf algebra and the universal enveloping algebra of the Lie algebra LX of primitive elements. It is known that \depthH∗(ΩX;Q)≤\catX, the Lusternik-Schnirelmann category of X.

      For any connected CW complex we construct a completion Hˆ(ΩX) of H∗(ΩX;Q) as a complete Hopf algebra with primitive sub Lie algebra LX, and define \depthX to be the least p or ∞ such that \ExtpULX(Q,Hˆ(ΩX))≠0.

      Theorem: for any connected CW complex, \depthX≤\catX.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno