Ir al contenido

Documat


Old mathematical challenges: precedents to the millennium problems

  • Autores: Sergio Segura de León Árbol académico
  • Localización: Mètode Science Studies Journal: Annual Review, ISSN 2174-3487, ISSN-e 2174-9221, Nº. 8, 2018 (Ejemplar dedicado a: Making Science. A multitude of perspectives), págs. 26-33
  • Idioma: inglés
  • DOI: 10.7203/metode.0.9076
  • Enlaces
  • Resumen
    • The millennium problems set out by the Clay Mathematics Institute became a stimulus for mathematical research. The aim of this article is to highlight some previous challenges that were also a stimulus to finding proof for some interesting results. With this pretext, we present three moments in the history of mathematics that were important for the development of new lines of research. We briefly analyse the Tartaglia challenge, which brought about the discovery of a formula for third degree equations; Johan Bernoulli’s problem of the curve of fastest descent, which originated the calculus of variations; and the incidence of the problems posed by David Hilbert in 1900, focusing on the first problem in the list: the continuum hypothesis.

  • Referencias bibliográficas
    • Boyer, C. B. (1989). A history of mathematics. New York: John Wiley & Sons, Inc.
    • Dunham, W. (1990). Journey through genius. New York: John Wiley & Sons, Inc.
    • Hilbert, D. (1902). Mathematical problems. Bulletin of the American Mathematical Society, 8, 437–479. doi: 10.1090/S0002-9904-1902-00923-3
    • Kline, M. (1972). Mathematical thought from ancient to modern times. New York: Oxford University Press.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno