Ir al contenido

Documat


Evaluating the complexity of some families of functional data

  • E. G. Bongiorno [2] ; A.Goia [2] ; P. Vieu [1]
    1. [1] Paul Sabatier University

      Paul Sabatier University

      Arrondissement de Toulouse, Francia

    2. [2] Università del Piemonte Orientale
  • Localización: Sort: Statistics and Operations Research Transactions, ISSN 1696-2281, Vol. 42, Nº. 1, 2018, págs. 27-44
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper we study the complexity of a functional data set drawn from particular processes by means of a two-step approach. The first step considers a new graphical tool for assessing to which family the data belong: the main aim is to detect whether a sample comes from a monomial or an exponential family. This first tool is based on a nonparametric kNN estimation of small ball probability. Once the family is specified, the second step consists in evaluating the extent of complexity by estimating some specific indexes related to the assigned family. It turns out that the developed methodology is fully free from assumptions on model, distribution as well as dominating measure. Computational issues are carried out by means of simulations and finally the method is applied to analyse some financial real curves dataset.

  • Referencias bibliográficas
    • Aneiros, G., Bongiorno, E.G., Cao, R. and Vieu, P. (2017). Functional Statistics and Related Fields. Springer.
    • Biau, G., Cérou, F. and Guyader, A. (2010). Rates of convergence of the functional k-nearest neighbor estimate. IEEE Transactions on Information...
    • Biau, G. and Devroye, L. (2015). Lectures on the Nearest Neighbor Method. Springer Series in the Data Sciences. Springer, Cham.
    • Bogachev, V.I. (1998). Gaussian Measures. Vol. 62 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI.
    • Bongiorno, E.G. and Goia, A. (2016). Classification methods for Hilbert data based on surrogate density. Computational Statistics & Data...
    • Bongiorno, E.G. and Goia, A. (2017). Some insights about the small ball probability factorization for Hilbert random elements. Statistica...
    • Bongiorno, E.G., Goia, A., Salinelli, E. and Vieu, P. (Eds.) (2014). Contributions in Infinite-Dimensional Statistics and Related Topics....
    • Bosq, D. (2000). Linear Processes in Function Spaces. Vol. 149 of Lecture Notes in Statistics. SpringerVerlag, New York.
    • Burba, F., Ferraty, F. and Vieu, P. (2009). k-nearest neighbour method in functional nonparametric regression. Journal of Nonparametric Statistics,...
    • Campbell, J.Y., Lo, A.W.-C. and MacKinlay, A.C. (1997). The Econometrics of Financial Markets. Princeton University Press.
    • Cardot, H., Cénac, P. and Godichon-Baggioni, A. (2017). Online estimation of the geometric median in Hilbert spaces: Nonasymptotic confidence...
    • Chen, K., Delicado, P. and Müller, H.-G. (2017). Modelling function-valued stochastic processes, with applications to fertility dynamics....
    • Ciollaro, M., Genovese, C., Lei, J. and Wasserman, L. (2014). The Functional Mean-Shift Algorithm for Mode Hunting and Clustering in Infinite...
    • Delaigle, A. and Hall, P. (2010). Defining probability density for a distribution of random functions. Annals of Statistics, 38, 1171–1193.
    • Delsol, L. and Louchet, C. (2014). Segmentation of hyperspectral images from functional kernel density estimation. In: Contributions in Infinite-Dimensional...
    • Devroye, L., Györfi, L. and Lugosi, G. (1996). A Probabilistic Theory of Pattern Recognition. Vol. 31 of Applications of Mathematics (New...
    • Duda, R.O., Hart, P.E. and Stork, D.G. (2012). Pattern Classification. John Wiley & Sons.
    • Ferraty, F., Kudraszow, N. and Vieu, P. (2012). Nonparametric estimation of a surrogate density function in infinite-dimensional spaces. Journal...
    • Ferraty, F. and Vieu, P. (2006). Nonparametric Functional Data Analysis. Springer Series in Statistics. Springer, New York.
    • Fusai, G. and Roncoroni, A. (2007). Implementing Models in Quantitative Finance: Methods and Cases. Springer Science & Business Media.
    • Gasser, T., Hall, P. and Presnell, B. (1998). Nonparametric estimation of the mode of a dis-tribution of random curves. Journal of the Royal...
    • Goia, A. and Vieu, P. (2016). An introduction to recent advances in high/infinite dimensional statistics [Editorial]. Journal of Multivariate...
    • Györfi, L., Kohler, M., Krzyzak, A.and Walk, H. (2006). A Distribution-Free Theory of Non-Parametric Regression. Springer Science &...
    • Härdle, W. and Mammen, E. (1993). Comparing nonparametric versus parametric regression fits. Annals of Statistics, 21, 1926–1947.
    • Horváth, L. and Kokoszka, P. (2012). Inference for Functional Data with Applications. Springer Series in Statistics. Springer, New York.
    • Jacques, J. and Preda, C. (2014). Functional data clustering: a survey. Advances in Data Analysis and Classification, 8, 231–255.
    • Kara, L.-Z., Laksaci, A., Rachdi, M. and Vieu, P. (2017). Data-driven kNN estimation in nonparametric functional data analysis. Journal of...
    • Kloeden, P.E. and Platen, E. (1992). Numerical Solution of Stochastic Differential Equations. Vol. 23 of Applications of Mathematics (New...
    • Kokoszka, P., Oja, H., Park, B. and Sangalli, L. (2017). Special issue on functional data analysis. Econometrics and Statistics, 1, 99–100.
    • Kudraszow, N.L. and Vieu, P. (2013). Uniform consistency of kNN regressors for functional variables. Statistics & Probability Letters,...
    • Laloë, T. (2008). A k-nearest neighbor approach for functional regression. Statistics & Probability Letters, 78, 1189–1193.
    • Li, W.V., Shao and Q.-M. (2001). Gaussian processes: inequalities, small ball probabilities and applications. In: Stochastic Processes: Theory...
    • Lian, H. (2011). Convergence of functional k-nearest neighbor regression estimate with functional responses. Electronic Journal of Statistics,...
    • Lifshits, M.A. (2012). Lectures on Gaussian Processes. Springer Briefs in Mathematics. Springer, Heidelberg.
    • Masry, E. (2005). Nonparametric regression estimation for dependent functional data: asymptotic normality. Stochastic Processes and their...
    • Nikitin, Y.Y. and Pusev, R.S. (2013). Exact small deviation asymptotics for some Brownian functionals. Theory of Probability and Its Applications,...
    • Ramsay, J.O. and Silverman, B.W. (2005). Functional Data Analysis, 2nd Edition. Springer Series in Statistics. Springer, New York.
    • Vilar, J.M., Raña, P. and Aneiros, G. (2016). Using robust FPCA to identify outliers in functional time series, with applications to the...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno