Ir al contenido

Documat


Modelo para el control óptimo del vih con tasa de infección dependiente de la densidad del virus

  • Autores: Hernán Darío Toro Zapata, Carlos Andrés Trujillo Salazar
  • Localización: Revista de Matemática: Teoría y Aplicaciones, ISSN 2215-3373, ISSN-e 2215-3373, Vol. 25, Nº. 2, 2018, págs. 261-294
  • Idioma: español
  • DOI: 10.15517/rmta.v25i2.33625
  • Enlaces
  • Resumen
    • español

      Se propone un modelo en ecuaciones diferenciales ordinarias para describir la dinámica de infección por VIH en una población de células T CD4 susceptibles a la infección y considerando una tasa de infección no lineal densodependiente. Se analiza la estabilidad del modelo con base en el número básico de reproducción, lo que permite determinar resultados de estabilidad y un umbral de control mediante la reducción de la tasa máxima de infección. Luego se formula un problema de control óptimo para establecer funciones óptimas de tratamiento mediante inhibidores de transcriptasainversa e inhibidores de proteasa, que minimicen la carga viral y los costos directos y/o indirectos de la administración del tratamiento. Se estudian los casos en que la efectividad del tratamiento es nula y plena, y para el caso de efectividad imperfecta del tratamiento se acude al Principio del Máximo de Pontryagin. Se presentan simulaciones numéricas del modelo sin tratamiento y de los diferentes escenarios con tratamiento.

    • English

      We propose a model on ordinary differential equations to describe the dynamics of HIV infection in a population of CD4 T cells susceptible to infection and considering a nonlinear infection rate depending on viral density. The stability of the model is analyzed based on the basic reproductionnumber, which allows us to determine stability results and a control threshold by reducing the rate of maximum infection. An optimal control problem is then formulated to establish optimal treatment functions by reverse transcriptase inhibitors and protease inhibitors that minimize viral load and direct and/or indirect costs of treatment administration. We study the cases in which the effectiveness of the treatment is null and full, and for the case of imperfect effectiveness of the treatment, we refer to the Maximum Principle of Pontryagin. Numerical simulations of the model without treatment and of the different scenarios with treatment are presented.

  • Referencias bibliográficas
    • Adams, B.M.; Banks, H.T.; Davidian, M.; Kwon, H.D.; Tran, H.T.; Wynne, S.N.; Rosenberg, E.S. (2005) “HIV dynamics: modeling, data analysis,...
    • AIDS (2011) Guidelines for the Use of Antiretroviral Agents in HIV-1-Infected Adults and Adolescents.
    • Arhel, N. (2010) “Revisiting HIV-1 uncoating”, Retrovirology 7(96).
    • Arnold, E.; Sarafianos, S.G. (2008) “Molecular biology: An HIV secret uncovered”, Nature 453(7192): 169–170.
    • Bairagi, N.; Adak, D. (2014) “Global analysis of HIV-1 dynamics with Hill type infection rate and intracellular delay”, Applied Mathematical...
    • Bandyopadhyay, M.; Chattopadhyay, J. (2005) “Ratio-dependent predator-prey model: effect of environmental fluctuation and stability”, Nonlinearity...
    • Campos-Delgado, D. U.; Palacios, E. (2005) “Análisis y control de la dinámica del VIH-1”, Universidad Autónoma de San Luis Potosí, Facultad...
    • Cazelles, B.; Chau, N.P. (1997) “Using the Kalman filter and dynamic models to assess the changing HIV/AIDS epidemic”, Mathematical Bio- sciences...
    • Chao, D. L.; Davenport, M. P.; Forrest, S.; Perelson, A. S. (2004) “A stochastic model of cytotoxic T cell responses”, Journal of Theoretical...
    • Cleary, S. M.; Mooney, G. H.; McIntyre, D. E. (2011) “Claims on health care: a decision-making framework for equity, with application to treatment...
    • Culshaw, R. V.; Ruan, S.; Spiteri, R. J. (2004) “Optimal HIV treatment by maximising immune response”, Journal of Mathematical Biology 48(5):...
    • Dalal, N.; Greenhalgh, D.; Mao, X. (2008) “A stochastic model for internal HIV dynamics”, Journal of Mathematical Analysis and Applications...
    • Del Valle, S.; Evangelista, A.M.; Velasco, M.C.; Kribs-Zaleta, C.M.; Schmitz, S.F.H. (2004) “Effects of education, vaccination and treatment...
    • Dinga, A.; Wub, H. (1999) “Relationships between antiviral treatment effects and biphasic viral decay rates in modeling HIV dynamics, Mathematical...
    • Fleming, W.H.; Rishel, R. W. (1975) Deterministic and Stochastic Optimal Control. Springer-Verlag, New York.
    • Gómez, M. (2008) “Comparación de tres estrategias de tamizaje para la prevención de la infección perinatal por VIH en Colombia: análisis de...
    • Gray, R.H.; Li, X.; Wawer, M.J.; Gange, S.J.; Serwadda, D.; Sewankambo, N.K.; Moore, R.; Wabwire-Mangen, F.; Lutalo, T.; Quinn, T.C. (2003)...
    • Guo, H.; Li, M.Y. (2008) “Global dynamics of a staged-progression model with amelioration for infectious diseases”, Journal of Biological...
    • Haacker, M. (2002) Modeling the Macroeconomic Impact of HIV/AIDS. IMF Working Paper.
    • Hackbusch, W. (1978) “A numerical method for solving parabolic equations with opposite orientations”, Computing 20(3): 229–240.
    • Hosseini, I.; Gabhann, F. (2012) “Multi-scale modeling of HIV infection in vitro and APOBEC3G-based anti-retroviral therapy”, PLoS Computational...
    • Huang, G.; Ma, W.; Takeuchi, Y. (2009) “Global properties for virus dynamics model with Beddington-DeAngelis functional response”, Applied...
    • Jiang, D.; Liu, Q.; Shi, N.; Hayat, T.; Alsaedi, A.; Xia, P. (2017) “Dynamics of a stochastic HIV-1 infection model with logistic growth”,...
    • Joly, M.; Pinto, J. M. (2006) “Role of mathematical modeling on the optimal control of HIV-1 pathogenesis”, AIChE Journal 52(3): 856–884.
    • Joshi, H. R. (2002) “Optimal control of an HIV immunology model”, Optimal Control Applications and Methods 23(4): 199–213.
    • Kamina, A.; Makuch, R. W.; Zhao, H. (2001) “A stochastic modeling of early HIV-1 population dynamics”, Mathematical Biosciences 170(2): 187–198.
    • Khalil, H.K. (1996). Nonínear Systems. Prentice-Hall, New Jersey.
    • Kirschner, D. (1996) “Using mathematics to understand HIV immune dynamics”, Notices of the AMS 43(2): 191–202.
    • Kirschner, D.; Webb, G.F. (1996) “A model for treatment strategy in the chemotherapy of AIDS”, Bulletin of Mathematical Biology 58(2): 367–390.
    • Kirschner, D.E.; Webb, G.F. (1998) “Immunotherapy of HIV-1 infection”, Journal of Biological Systems 6(1): 71–83.
    • Kirschner, D.E.; Chang, S.T.; Riggs, T.W.; Perry, N.; Linderman, J.J. (2007) “Toward a multiscale model of antigen presentation in immunity”,...
    • Kouyos, R.D.; Althaus, C.L.; Bonhoeffer, S. (2006) “Stochastic or deterministic: what is the effective population size of HIV-1?”, Trends...
    • La Salle, J.P. (1976) The Stability of Dynamical Systems. Society for Industrial and Applied Mathematics, Philadelphia.
    • Ladino, L.M.; Valverde, J.C. (2012) “Population dynamics of a two-stage species with recruitment”, Mathematical Methods in the Applied Sciences...
    • Lenhart, S.; Workman, J.T. (2007) Optimal Control Applied to Biological Models. Chapman & Hall/CRC, United States.
    • Li, D.; Ma, W. (2007) “Asymptotic properties of a HIV-1 infection model with time delay”, Journal of Mathematical Analysis and Applications...
    • Mubayi, A.; Zaleta, C.K.; Martcheva, M.; Castillo-Chávez, C. (2010) “A cost-based comparison of quarantine strategies for new emerging diseases”,...
    • Nelson, P.W.; Murray, J D.; Perelson, A.S. (2000) “A model of HIV-1 pathogenesis that includes an intracellular delay”, Mathematical Biosciences...
    • Núñez, C.A.; Aguilar, S.; Fernández, V.H. (2001) Exclusión Social y VIH-SIDA en Guatemala. Sistema de Naciones Unidas, Guatemala.
    • Oliva-Moreno, J.; López-Bastida, J.; Serrano-Aguilar, P.; Perestelo-Pérez, L. (2010) “Determinants of health care costs of HIV-positive patients...
    • Orellana, J.M. (2011) “Optimal drug scheduling for HIV therapy efficiency improvement”, Biomedical Signal Processing and Control 6(4): 379–386.
    • Perelson, A.S. (2002) “Modelling viral and immune system dynamics”, Nature Reviews Immunology 2(1): 28–36.
    • Perelson, A.S.; Kirschner, D.E.; De Boer, R. (1993) “Dynamics of HIV infection of CD4+ T cells”, Mathematical Biosciences 114(1): 81–125.
    • Perelson, A.S.; Nelson, P.W. (1999) “Mathematical analysis of HIV-1 dynamics in vivo”, SIAM Review 41(1): 3–44.
    • Raffi, F.; Rachlis, A.; Stellbrink, H.J.; Hardy, W.D.; Torti, C.; Orkin, C.; Bloch, M.; Podzamczer, D.; Pokrovsky, V.; Pulido, F.; Almond,...
    • Revilla, T.; García-Ramos, G. (2003) “Fighting a virus with a virus: a dynamic model for HIV-1 therapy”, Mathematical Biosciences 185(2):...
    • Ribeiro, R. M.; Bonhoeffer, S. (1999) “A stochastic model for primary HIV infection: optimal timing of therapy”, AIDS 13(3): 351–357.
    • Schmitz, H. (2000) “Effects of treatment or/and vaccination on HIV transmission in homosexuals with genetic heterogeneity”, Mathematical Bio-...
    • Shim, H.; Han, S.J.; Chung, C.C.; Nam, S.W.; Seo, J.H. (2003) “Optimal scheduling of drug treatment for HIV infection: continuous dose control...
    • Srivastava, P.K.; Chandra, P. (2010) “Modeling the dynamics of HIV and CD4+ T cells during primary infection”, Nonlinear Analysis: Real...
    • Stengel, R.F. (2008) “Mutation and control of the human immunodeficiency virus”, Mathematical Biosciences 213(2): 93–102.
    • Tan, W.Y.; Byers, R.H. (1993) “A stochastic model of the HIV epidemic and the HIV infection distribution in a homosexual population”, Mathematical...
    • Taylor, J.M.; Cumberland, W.G.; Sy, J.P. (1994) “A stochastic model for analysis of longitudinal AIDS data”, Journal of the American Statistical...
    • Toro, H.D.; Caicedo, A.G.; Bichara, D.; Lee, S. (2014) “Role of Active and Inactive Cytotoxic Immune Response in Human Immunodeficiency Virus...
    • Toro, H.D.; Londoño, C.A.; Trujillo, C.A. (2014) “Modelo de simulación para la infección por VIH y su interacción con la respuesta inmune...
    • Toro-Zapata, H.D.; Roa-Vásquez, E.; Mesa-Mazo, M.J. (2017) “Modelo estocástico para la infección con VIH de las células T CD4+ del sistema...
    • Trujillo-Salazar, C.A.; Toro-Zapata, H.D. (2014) “Análisis teórico de la transmisión y el control del VIH/SIDA en un centro de reclusión”,...
    • Trujillo-Salazar, C.A.; Toro-Zapata, H.D. (2015) “Simulation model for AIDS dynamics and optimal control through antiviral treatment”, in:...
    • Wandeler, G.; Keiser, O.; Hirschel, B.; Günthard, H.F.; Bernasconi, E.; Battegay, M.; Clerc, O.; Vernazza, P.L.; Furrer, H. (2011) “A comparison...
    • Wang, J.; Guo, M.; Liu, X.; Zhao, Z. (2016) “Threshold dynamics of HIV-1 virus model with cell-to-cell transmission, cell-mediated immune...
    • Wang, L. (2011) “Global mathematical analysis of an HIV-1 infection model with holling Type-II incidence”, Communications in Applied Analysis...
    • Zaric, G.S.; Bayoumi, A.M.; Brandeau, M.L.; Owens, D.K. (2008) “The cost-effectiveness of counseling strategies to improve adherence to highly...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno