Ir al contenido

Documat


The variance conjecture on hyperplane projections of the ℓnp balls

    1. [1] Universidad de Zaragoza

      Universidad de Zaragoza

      Zaragoza, España

  • Localización: Revista matemática iberoamericana, ISSN 0213-2230, Vol. 34, Nº 2, 2018, págs. 879-904
  • Idioma: inglés
  • DOI: 10.4171/RMI/1007
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We show that for any 1≤p≤∞, the family of random vectors uniformly distributed on hyperplane projections of the unit ball of ℓnp verify the variance conjecture Var|X|2≤Cmaxξ∈Sn−1E⟨X,ξ⟩2E|X|2, where C depends on p but not on the dimension n or the hyperplane. We will also show a general result relating the variance conjecture for a random vector uniformly distributed on an isotropic convex body and the variance conjecture for a random vector uniformly distributed on any Steiner symmetrization of it. As a consequence we will have that the class of random vectors uniformly distributed on any Steiner symmetrization of an ℓnp-ball verify the variance conjecture.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno