Ir al contenido

Documat


Geometry of spaces of real polynomials of degree at most n

  • Christopher Boyd [1] ; Anthony Brown [1]
    1. [1] University College Dublin

      University College Dublin

      Irlanda

  • Localización: Revista matemática iberoamericana, ISSN 0213-2230, Vol. 33, Nº 4, 2017, págs. 1149-1171
  • Idioma: inglés
  • DOI: 10.4171/RMI/966
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We study the geometry of the unit ball of the space of integral polynomials of degree at most n on a real Banach space. We prove Smul'yan type theorems for Gâteaux and Fréchet differentiability of the norm on preduals of spaces of polynomials of degree at most n. We show that the set of extreme points of the unit ball of the predual of the space of integral polynomials is {±∑nj=0ϕj:ϕ∈E′,∥ϕ∥≤1}. This contrasts greatly with the situation for homogeneous polynomials where the set of extreme points of the unit ball is the set {±ϕn:ϕ∈E′,∥ϕ∥=1}.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno