Ir al contenido

Documat


On the asymptotic behaviour of the kernel of an adjoint convection-diffusion operator in a long cylinder

  • Grégoire Allaire [1] ; Andrey Piatnitski [2]
    1. [1] University of Paris-Saclay

      University of Paris-Saclay

      Arrondissement de Palaiseau, Francia

    2. [2] Narvik University College
  • Localización: Revista matemática iberoamericana, ISSN 0213-2230, Vol. 33, Nº 4, 2017, págs. 1123-1148
  • Idioma: inglés
  • DOI: 10.4171/RMI/965
  • Enlaces
  • Resumen
    • This paper studies the asymptotic behaviour of the principal eigenfunction of the adjoint Neumann problem for a convection diffusion operator defined in a long cylinder. The operator coefficients are 1-periodic in the longitudinal variable. Depending on the sign of the so-called longitudinal drift (a weighted average of the coefficients), we prove that this principal eigenfunction is equal to the product of a specified periodic function and of an exponential, up to the addition of fast decaying boundary layer terms.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno