Ir al contenido

Documat


Some non-Pólya biquadratic fields with low ramification

  • Bahar Heidaryan [1] ; Ali Rajaei [1]
    1. [1] Tarbiat Modares University

      Tarbiat Modares University

      Irán

  • Localización: Revista matemática iberoamericana, ISSN 0213-2230, Vol. 33, Nº 3, 2017 (Ejemplar dedicado a: Yves Meyer), págs. 1037-1044
  • Idioma: inglés
  • DOI: 10.4171/RMI/963
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Pólya fields are fields with principal Bhargava factorial ideals, and as a generalization of class number one number fields, their classification might be of interest to number theorists. It is known that Pólya fields have little ramification, and the aim of this paper is to prove non-Pólyaness of an infinite family of biquadratic number fields with 3 or 4 primes of ramification, correcting a minor mistake in the literature. It turns out that finer arithmetic invariants of the field such as the Hasse unit index plays a direct role in some cases.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno