Ir al contenido

Documat


Preference-based evolutionary multi-objective optimization for solving fuzzy portfolio selection problems

  • Ana Belén Ruiz Mora [1] ; Rubén Saborido [2] ; José D. Bermúdez [3] Árbol académico ; Mariano Luque Árbol académico ; ENRIQUETA VERCHER [3] Árbol académico
    1. [1] Universidad de Málaga

      Universidad de Málaga

      Málaga, España

    2. [2] Ecole Polytechnique de Montréal

      Ecole Polytechnique de Montréal

      Canadá

    3. [3] Universitat de València

      Universitat de València

      Valencia, España

  • Localización: Rect@: Revista Electrónica de Comunicaciones y Trabajos de ASEPUMA, ISSN-e 1575-605X, Vol. 18, Nº. 1, 2017, págs. 1-15
  • Idioma: inglés
  • DOI: 10.24309/recta.2017.18.1.01
  • Enlaces
  • Resumen
    • español

      En este trabajo, abordamos el problema de selección de carteras de inversión desde una perspectiva multiobjetivo y consideramos algoritmos evolutivos de optimización multiobjetivo basados en preferencias para generar carteras eficientes teniendo en cuenta preferencias del inversor. Por un lado, proponemos un modelo de optimización para la selección de carteras con tres objetivos, en el que se han considerado números fuzzy de tipo LR para modelizar la incertidumbre de los futuros beneficios. Las funciones objetivo a optimizar son el beneficio esperado (a maximizar) y dos medidas del riesgo de la inversión (ambas a minimizar): la semi-desviación media absoluta por debajo del beneficio esperado y el valor de riesgo (medida de la peor pérdida esperada en un horizonte dado). Además de la restricción presupuestaria, se ha introducido una restricción que limita la cardinalidad de las carteras y cotas superiores e inferiores para la inversión en cada activo. El problema de optimizatión multiobjetivo resultante, denominado por sus siglas en inglés como modelo MASdVaR (mean-absolute semi-deviation value-at-risk model), es no lineal y no convexo y, por ello, se ha aplicado el algoritmo evolutivo basado en preferencias WASF-GA para generar carteras de inversión eficientes. En WASF-GA, se consideran valores de aspiración que el decisor desea alcanzar en cada objetivo para expresar las preferencias. Para el modelo MASdVaR, los valores de aspiración considerados corresponden a un perfil de inversor conservador. Los resultados obtenidos para un caso basado en el mercado de inversión español demuestran que las carteras eficientes obtenidas que alcanzan los mayores beneficios, mejoran los valores de referencia considerados para las dos medidas del riesgo. Por otro lado, aquellas carteras con beneficios más moderados presentan valores de riesgo menores, pero sin dejar de satisfacer las aspiraciones del inversor, por lo que representan estrategias de inversión menos arriesgadas.

    • English

      In this work, we address the multi-criteria paradigm of the portfolio selection problem and consider a preference-based evolutionary multi-objective optimization algorithm to find Pareto optimal portfolio solutions based on the investor preferences. Firstly, we propose a three-objective optimization model for portfolio selection, in which the uncertainty of the portfolio returns is modelled by means of an LR-power fuzzy variable. In the model, three criteria are considered, which are the credibility expected value of the returns (to be maximized) and two measures of the risk (both to be minimized): the belowmean absolute semi-deviation and the fuzzy value-at-risk. Besides the budget constraint, a cardinality constraint and lower and upper bound constraints for the assets are also considered. The resulting model, called a credibility mean-absolute semi-deviation value-at-risk (MASdVaR) model, is a non-linear and nonconvex multi-objective optimization problem which is solved by means of the preference-based evolutionary algorithm WASF-GA. In WASF-GA, the preferences are expressed by means of aspiration values that the decision maker would like to achieve for the objectives. In the MASdVaR model, the investor aspiration values considered for the objectives are calculated assuming a conservative profile. The results obtained for a case study based on the Spanish stock market show that the portfolios generated with the highest expected returns improve the aspiration values considered for the two risk measures. Besides, portfolios with intermediate values for the expected return achieve lower values for the risk measures, but they still improve their aspiration values and thus represent less risky investment options for the investor.

  • Referencias bibliográficas
    • J. D. Bermudez, J. V. Segura, and E. Vercher. A fuzzy ranking strategy for portfolio selection applied to the Spanish stock market. In IEEE...
    • J. D. Bermudez, J. V. Segura, and E. Vercher. A multi-objective genetic algorithm for cardinality constrained fuzzy portfolio selection. Fuzzy...
    • R. Bhattacharyya, S. Kar, and D. D. Majumder. Fuzzy mean-variance-skewness portfolio selection models by interval analysis. Computers &...
    • J. Branke. Consideration of partial user preferences in evolutionary multiobjective optimization. In J. Branke, K. Deb, K. Miettinen, and...
    • T. J. Chang, S. C. Yang, and K. J. Chang. Portfolio optimization problems in different risk measures using genetic algorithm. Expert Systems...
    • C. A. C. Coello. Handling preferences in evolutionary multiobjective optimization: A survey. In IEEE Congress on Evolutionary Computation,...
    • C. A. C. Coello, G. B. Lamont, and D. A. V. Veldhuizen. Evolutionary Algorithms for Solving Multi-Objective Problems. Springer US, New York,...
    • K. Deb. Multi-objective Optimization using Evolutionary Algorithms. Wiley, Chichester, 2001.
    • K. Deb and K. Miettinen. Nadir point estimation using evolutionary approaches: better accuracy and computational speed through focused search....
    • K. Deb, K. Miettinen, and S. Chaudhuri. Towards an estimation of nadir objective vector using a hybrid of evolutionary and local search approaches....
    • D. Dubois and H. Prade. Fuzzy sets and systems Theory and applications. Academic press, New York, 1980.
    • J. J. Durillo and A. J. Nebro. jMetal: A java framework for multi-objective optimization. Advances in Engineering Software, 42:760–771, 2011.
    • M. Ehrgott, K. Klamroth, and C. Schwehm. An MCDM approach to portfolio optimization. European Journal of Operational Research, 155(3):752–770,...
    • E. Fernandez, E. Lopez, G. Mazcorro, R. Olmedo, and C. A. C. Coello. Application of the non-outranked sorting genetic algorithm to public...
    • X. Huang. Mean-semivariance models for fuzzy portfolio selection. Journal of Computational and Applied Mathematics, 217(1):1–8, 2008.
    • M. Inuiguchi and T. Tanino. Possibilistic linear programming with fuzzy if-then rule coefficients. Fuzzy Optimization and Decision Making,...
    • A. Jaszkiewicz and J. Branke. Interactive multiobjective evolutionary algorithms. In J. Branke, K. Deb, K. Miettinen, and R. Slowinski, editors,...
    • K. Liagkouras and K. Metaxiotis. Efficient portfolio construction with the use of multiobjective evolutionary algorithms: Best practices and...
    • B. Liu. A survey of credibility theory. Fuzzy Optimization and Decision Making, 5:387–408, 2006.
    • W. G. Liu, Y. J.and Zhang and X. J. Zhao. Fuzzy multi-period portfolio selection optimization model with discounted transaction costs. Soft...
    • H. M. Markowitz. Portfolio selection. The Journal of Finance, 7(1):77–91, 1952.
    • K. Metaxiotis and K. Liagkouras. Multiobjective evolutionary algorithms for portfolio management: A comprehensive literature review. Expert...
    • K. Miettinen. Nonlinear Multiobjective Optimization. Kluwer Academic Publishers, Boston, 1999.
    • K. Miettinen and M. M. Mäkelä. On scalarizing functions in multiobjective optimization. OR-Spectrum, 24(2):193–213, 2002.
    • R. Moral-Escudero, R. Ruiz-Torrubiano, and A. Suarez. Selection of optimal investment portfolios with cardinality constraints. In IEEE Congress...
    • R. Rodriguez, M. Luque, and M. Gonzalez. Portfolio selection in the Spanish stock market by interactive multiobjective programming. TOP, 19(1):213–231,...
    • A. B. Ruiz, R. Saborido, and M. Luque. A preference-based evolutionary algorithm for multiobjective optimization: The weighting achievement...
    • R. Saborido, A. B. Ruiz, J. D. Bermudez, E. Vercher, and M. Luque. Evolutionary multiobjective optimization algorithms for fuzzy portfolio...
    • R. E. Steuer. Multiple Criteria Optimization: Theory, Computation and Application. John Wiley, New York, 1986.
    • R. E. Steuer, Y. Qi, and M. Hirschberger. Suitable-portfolio investors, nondominated frontier sensitivity, and the effect of multiple objectives...
    • E. Vercher and J. D. Bermudez. A possibilistic mean-downside risk-skewness model for efficient portfolio selection. IEEE Transactions on Fuzzy...
    • E. Vercher and J. D. Bermudez. Portfolio optimization using a credibility mean-absolute semi-deviation model. Expert Systems with Applications,...
    • E. Vercher, J. D. Bermudez, and J. V. Segura. Fuzzy portfolio optimization under downside risk measures. Fuzzy Sets and Systems, 158:769–782,...
    • B. Wang, S. Wang, and J. Watada. Fuzzy-portfolio-selection models with value-at-risk. IEEE Transactions on Fuzzy Systems, 19:758–769, 2011.
    • A. P. Wierzbicki. The use of reference objectives in multiobjective optimization. In G. Fandel and T. Gal, editors, Multiple Criteria Decision...
    • L. Yu, S. Wang, and K. K. Lai. Neural network-based mean-variance-skewness model for portfolio selection. Computers & Operations Research,...
    • L. Yu, S. Wang, F. Wen, and K. K. Lai. Genetic algorithm-based multi-criteria project portfolio selection. Annals of Operations Research,...
    • L. A. Zadeh. Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems, 1:3–28, 1978.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno