Aitziber Atutxa Salazar, Mikel Iruskieta Quintian, Kepa Xabier Bengoetxea Kortazar
En este artículo presentamos el primer detector de la Unidad Central (UC) de resúmenes científicos en euskera basado en técnicas de aprendizaje automático. Después de segmentar el texto en unidades de discurso elementales, la detección de la unidad central es crucial para anotar de forma más fiable la estructura relacional de textos bajo la Teoría de la Estructura Retórica o Rhetorical Structure Theory (RST). Además, la unidad central puede ser explotada en diversas tareas como resumen automático, tareas de pregunta y respuesta o análisis del sentimiento. Los resultados obtenidos demuestran que las técnicas de aprendizaje automático superan a las técnicas basadas en reglas a pesar del pequeño tamaño del corpus y de la heterogeneidad de los dominios que éste muestra, dejando todavía lugar para mejoras y desarrollo.
This paper presents an automatic detector of the discourse central unit (CU) in scientific abstracts based on machine learning techniques. After segmenting a text in its elementary discourse units, the detection of the central unit is a crucial step on the way to robustly build discourse trees under the Rhetorical Structure Theory (RST). Besides, CU detection may also be useful in automatic summarization, question answering and sentiment analysis tasks. Results show that the CU detection using machine learning techniques for Basque scientific abstracts outperform rule based techniques, even on a small size corpus on different domains. This leads us to think that there is still room for improvement.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados