Ir al contenido

Documat


Sistema de predicción de peticiones de trabajos y servicios en sectores profesionales

  • Autores: Christian Moreno Bermúdez, Arturo Montejo Ráez Árbol académico
  • Localización: Procesamiento del lenguaje natural, ISSN 1135-5948, Nº. 57, 2016, págs. 173-176
  • Idioma: español
  • Títulos paralelos:
    • Prediction system for job and service requests in professional sectors
  • Enlaces
  • Resumen
    • español

      El presente trabajo presenta un sistema que predice peticiones de trabajos y servicios en formato de texto en categorías o sectores profesionales. Se realiza una comparativa de distintos algoritmos de Categorización Automática de Textos para evaluarlos y construir el sistema. El sistema forma parte de una aplicación web que intermedia entre particulares que demandan presupuestos sobre trabajos y profesionales que buscan clientes y ofertan servicios.

    • English

      System that predicts job requests and services in text format into categories or sectors. A comparison of different algorithms for Automatic Text Categorization is performed in order to build the final system. The system is part of a web application that mediates between individuals who demand estimates about jobs and professionals who seek clients and offer services.

  • Referencias bibliográficas
    • Altman, N. S. 1992. An introduction to kernel and nearest-neighbor nonparametric regression. The American Statistician 46 (3): 175–185.
    • Breiman, Leo. (1996). Bagging predictors. Machine Learning. 24(2):123-140.
    • Breiman, Leo. (2001). Random Forests. Machine Learning 45 (1): 5–32.
    • Cardie, C., Farina, C. R., Rawding, M., & Aijaz, A. (2008). An eRulemaking Corpus: Identifying Substantive Issues in Public Comments.
    • Chih-Chung Chang and Chih-Jen Lin (2013). LIBSVM: A Library for Support Vector Machines. National Taiwan University.
    • Cohen J. A coefficient of agreement for nominal scales. Educ Psychol Meas 1960; 20: 37-46.
    • Freund Yoav and Schapire Robert E. (1996): Experiments with a new boosting algorithm. 148-156.
    • Gentili, G. L., Marinilli, M., Micarelli, A., & Sciarrone, F. (2001). Text categorization in an intelligent agent for filtering information...
    • H. Liu, R. Setiono (1996): A probabilistic approach to feature selection - A filter solution. 319-327.
    • Jackson, P., & Moulinier, I. (2007). Natural language processing for online applications: Text retrieval, extraction and categorization...
    • Joachims, T. (1998). Text categorization with support vector machines: Learning with many relevant features (pp. 137-142). Springer Berlin...
    • Montejo-Ráez, A., Urena-Lopez, L., & Steinberger, R. (2005). Text categorization using bibliographic records: beyond document content....
    • O. Pourret, P. Naim and B. Marcot. 2008. Bayesian Networks: A Practical Guide to Applications. Chichester, UK: Wiley.
    • Platt, John. 1998, Sequential Minimal Optimization: A Fast Algorithm for Training Support Vector Machines.
    • Quinlan, J. R. 1993. C4.5: Programs for Machine Learning.
    • Rish, Irina. 2001. An empirical study of the naive Bayes classifier.
    • Sebastiani, F. (2002). Machine learning in automated text categorization. ACM computing surveys (CSUR), 34(1), 1-47.
    • Seewald, A. K. (2002). How to Make Stacking Better and Faster While Also Taking Care of an Unknown Weakness. 554-561.
    • William W. Cohen. 1995. Fast Effective Rule Induction. In: Twelfth International Conference on Machine Learning, 115-123.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno