En las plataformas de microblogging abundan ciertos tokens especiales como los hashtags o las menciones en los que un grupo de palabras se escriben juntas sin espaciado entre ellas; p.ej.: #añobisiesto o @ryanreynoldsnet. Debido a la forma en que se escriben este tipo de textos, este fenómeno de ensamblado de palabras puede aparecer junto a su opuesto, la segmentación de palabras, afectando a cualquier elemento del texto y dificultando su análisis. En este trabajo se muestra un enfoque algorítmico que utiliza como base un modelo del lenguaje - en nuestro caso concreto uno basado en redes neuronales - para resolver el problema de la segmentación y ensamblado de palabras, en el que se trata de recuperar el espaciado estándar de las palabras que han sufrido alguna de estas transformaciones añadiendo o quitando espacios donde corresponda. Los resultados obtenidos son prometedores e indican que tras un mayor refinamiento del modelo del lenguaje se podrá sobrepasar al estado del arte.
In social media platforms special tokens abound such as hashtags and mentions in which multiple words are written together without spacing between them; e.g. #leapyear or @ryanreynoldsnet. Due to the way this kind of texts are written, this word assembly phenomenon can appear with its opposite, word segmentation, affecting any token of the text and making it more difficult to perform analysis on them. In this work we show an algorithmic approach based on a language model - in this case a neural model - to solve the problem of the segmentation and assembly of words, in which we try to recover the standard spacing of the words that have suffered one of these transformations by adding or deleting spaces when necessary. The promising results indicate that after some further refinement of the language model it will be possible to surpass the state of the art.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados