Ir al contenido

Documat


A Supervised Central Unit Detector for Spanish

  • Autores: Kepa Xabier Bengoetxea Kortazar, Mikel Iruskieta Quintian
  • Localización: Procesamiento del lenguaje natural, ISSN 1135-5948, Nº. 60, 2018, págs. 29-36
  • Idioma: inglés
  • Títulos paralelos:
    • Un detector de la unidad central para textos en castellano
  • Enlaces
  • Resumen
    • español

      En este artículo presentamos el primer detector de la Unidad Central (CU) de resúmenes científicos en castellano basado en técnicas de aprendizaje automático. Para ello, nos hemos basado en la anotación del Spanish RST Treebank anotado bajo la Teoría de la Estructura Retórica o Rhetorical Structure Theory (RST). El método empleado para detectar la unidad central es el modelo de bolsa de palabras utilizando clasificadores como Naive Bayes y SVM. Finalmente, evaluamos el rendimiento de los clasificadores y hemos creado el detector de CUs usando el mejor clasificador.

    • English

      In this paper we present the first automatic detector of the Central Unit (CU) for Spanish scientific abstracts based on machine learning techniques. To do so, learning and evaluation data was extracted from the RST Spanish Treebank annotated under the Rhetorical Structure Theory (RST). We use a bag-of-words model based on Naive Bayes and SVM classifiers to detect the central units of a text. Finaly, we evaluate the performance of the classifiers and choose the best to create an automatic CU detector.

  • Referencias bibliográficas

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno