Ir al contenido

Documat


Extensión natural a 3D del teorema de Pappus y su configuración completa

  • Autores: Eugenio Roanes Macías Árbol académico, Eugenio Roanes Lozano Árbol académico
  • Localización: Boletín de la Sociedad Puig Adam de profesores de matemáticas, ISSN 1135-0261, Nº. 80, 2008, págs. 38-56
  • Idioma: español
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Pappus's hexagon theorem states that: "the three intersection points of opposite sides of an hexagon, whose vertices lie alternatively on two lines, are collinear". The following natural extension of Pappus theorem to 3D is considered: "given an octagon, whose vertices lie alternatively on two planes, and whose opposite side-lines are secant, the four in-tersection points of opposite side-lines are coplanar". In this extension to 3D of Pappus theorem some vertices of the polygonal line can not be freely chosen, but an interesting property has been found: the four diago-nal lines passing through opposite vertices share a point. This property leads to a simple method to generate the configuration. Moreover, condi-tions of existence of this configuration are determined and the so called complete configuration is also described in detail.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno