Ángel Cobo Ortega , Rocío Rocha Blanco
Este artículo presenta una estrategia de representación documental y un algoritmo bioinspirado para realizar procesos de agrupamiento en colecciones multilingües de documentos en las áreas de la economía y la empresa. El enfoque propuesto permite al usuario identificar grupos de documentos económicos relacionados escritos en español o inglés usando técnicas inspiradas en comportamientos de organización y agrupamiento de objetos observados en algunos tipos de hormigas. Para conseguir una representación vectorial de cada documento independiente del idioma, se han utilizado dos recursos lingüísticos: un glosario económico y un tesauro. Cada documento es representado usando cuatro vectores de rasgos: palabras, nombres propios, términos económicos del glosario y descriptores del tesauro. La identificación de los nombres propios y la extracción y lematización de palabras se realizan usando herramientas específicas. El esquema tf-idf es utilizado para medir la importancia de cada rasgo en el documento, y se utiliza una combinación lineal convexa de separaciones angulares de los vectores de rasgos como medida de similitud de documentos. El trabajo muestra resultados experimentales de aplicación del algoritmo propuesto sobre un corpus español-inglés de documentos científicos de áreas económica y de gestión empresarial. Los resultados demuestran la utilidad y efectividad de las técnicas de ant clustering y del esquema de representación propuesto.
This paper presents a document representation strategy and a bio-inspired algorithm to cluster multilingual collections of documents in the field of economics and business. The proposed approach allows the user to identify groups of related economics documents written in Spanish and English using techniques inspired on clustering and sorting behaviours observed in some types of ants. In order to obtain a language independent vector representation of each document two multilingual resources are used: an economic glossary and a thesaurus. Each document is represented using four feature vectors: words, proper names, economic terms in the glossary and thesaurus descriptors. The proper name identification, word extraction and lemmatization are performed using specific tools. The tf-idf scheme is used to measure the importance of each feature in the document, and a convex linear combination of angular separations between feature vectors is used as similarity measure of documents. The paper shows experimental results of the application of the proposed algorithm in a Spanish-English corpus of research papers in economics and management areas. The results demonstrate the usefulness and effectiveness of the ant clustering algorithm and the proposed representation scheme.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados