Ir al contenido

Documat


Return Maps, Dynamical Consequences and Applications

    1. [1] Universitat Autònoma de Barcelona

      Universitat Autònoma de Barcelona

      Barcelona, España

    2. [2] Universitat de Barcelona

      Universitat de Barcelona

      Barcelona, España

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 14, Nº 2, 2015 (Ejemplar dedicado a: Hamiltonian Systems and Celestial Mechanics, HAMSYS-2014), págs. 353-379
  • Idioma: inglés
  • DOI: 10.1007/s12346-015-0154-z
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • After reviewing some general settings for return maps in problems reducible to 2D symplectic maps, details on the construction of return maps are presented. Different forms of such maps close to splitted separatrices (separatrix maps) are introduced, taking into account the size and shape of the splitting function and also the return time to the domains of interest. Then it is shown how to derive approximations by suitable standard-like maps. Dynamical consequences concerning the existence of invariant rotational curves (IRC) are derived. An application is made to theoretically estimate the location of the outermost IRC in the Sitnikov problem, which is in good agreement with numerical data. To compare with the cases which are approximated by the classical standard map, some details on the properties of the standard-like map with two harmonic terms are included. Finally a method to estimate the amount of chaos depending on the form of the separatrix map is introduced. Except otherwise stated all the systems we consider are assumed to be analytic, despite several of the properties we study are no longer analytic.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno