Ir al contenido

Documat


A bivariate response model for studying the marks obtained in two jointly-dependent modules in higher education

  • Emilio Gómez-Déniz [1] Árbol académico ; Nancy Dávila Cárdenes [1] ; María D. García Artiles [1]
    1. [1] Department of Quantitative Methods. University of Las Palmas de Gra n Canaria
  • Localización: Sort: Statistics and Operations Research Transactions, ISSN 1696-2281, Vol. 41, Nº. 2, 2017, págs. 255-276
  • Idioma: inglés
  • Enlaces
  • Resumen
    • We study the factors which may affect students’ marks in two modules, mathematics and statistics, taught consecutively in the first year of a Business Administration Studies degree course. For this purpose, we introduce a suitable bivariate regression model in which the dependent variables have bounded support and the marginal means are functions of explanatory variables. The marginal probability density functions have a classical beta distribution. Simulation experiments were performed to observe the behaviour of the maximum likelihood estimators. Comparisons with univariate beta regression models show the proposed bivariate regression model to be superior.

  • Referencias bibliográficas
    • Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19, 716–723.
    • Arnold, J.M. and Straten, J.T. (2012). Motivation and skills as determinants of first-year performance in economics. The Journal of Economic...
    • Bayes, C.L., Bazán, J.L. and Garcı́a, C. (2012). A new robust regression model for proportions. Bayesian Analysis, 4, 841–866.
    • Brooks, C. (2009). RATSHandbook to Accompany Introductory Econometrics for Finance. Cambridge University Press.
    • Cepeda-Cuervo, E. (2001). Modelagem de variabilidade em modelos lineares generalizados. PhD thesis, Mathematics Institute, Federal University...
    • Cepeda-Cuervo, C., Achcarb, J.A. and Garrido, L. (2014). Bivariate beta regression models: joint modeling of the mean, dispersion and association...
    • Cepeda-Cuervo, E., Núñez-Antón, V. (2013). Spatial double generalized beta regression models: extensions and applications to study quality...
    • Dolado, J.J. andMorales, E. (2009). Which factors determine academic performance of economics freshers? some spanish evidence. Investigaciones...
    • Ferrari, S. and Cribari-Neto, F. (2004). Beta regression for modelling rates and proportions. Journal of Applied Statistics, 31, 799–815.
    • Gómez-Déniz, E., Sordo, M. and Calderı́n-Ojeda, E. (2013). The log-Lindley distribution as an alternative to the beta regression model...
    • Gottschalk, J. and Maslen, E. (1988). Reduction formulae for generalised hypergeometric functions of one variable. Journal of Physics A: Mathematical...
    • Gradshteyn, I. and Ryzhik, I. (1994). Table of Integrals, Series, and Products. Boston: Academic Press (5th
    • ed. A. Jeffrey). Gurmu, S. and Elder, J. (2000). Generalized bivariate count data regression. models. Economics Letters, 68,
    • 31–36. Huang, X. and Oosterlee, C. (2011). Generalized beta regression models for random loss given default. The
    • Journal of Credit Risk, 7, 1–26. Jaynes, E. (1994). Probability Theory: The Logic of Science. http://omega.math.albany.edu:8008/
    • JaynesBook.html. Johnson, M. and Kuennen, E. (2006). Basic math skills and performance in an introductory statistics course.
    • Journal of Statistics Education, 14, 20–40. Lee, M.-L.T. (1996). Properties and applications of the Sarmanov family of bivariate distributions....
    • Lehmann, E. (1996). Some concepts of dependence. Annals of Mathematical Statistics, 37, 1137–115.
    • Lunsford, M.L. and Poplin, P. (2011). From research to practice: basic math skills and success in introductory statistics. Journal of Statistics...
    • Maher, M. (1990). A bivariate negative binomial model to explain traffic accident migration. Accident Analysis and Prevention, 22, 487–498.
    • Olkin, I. and Liu, R. (2003). A bivariate beta distribution. Statistics & Probability Letters, 62, 407–412.
    • Paolino, P. (2001). Maximum likelihood estimation of models with beta distributed dependent variables. Political Analysis, 9, 325–346.
    • Papke, L. and Wooldridge, J. (1996). Econometric methods for fractional response variables with an application to 401 (k) plan participation...
    • Papke, L. and Wooldridge, J. (2008). Panel data methods for fractional response variables with an application to test pass rates. Journal...
    • Pérez-Rodrı́guez, J.V. and Gómez-Déniz, E. (2015). Spread component costs and stock trading characteristics in the spanish stock exchange....
    • Tong, Y. (1980). Probability Inequalities in Multivariate Distributions. Academic Press, New York.
    • Wolfram, S. (2003). The Mathematica Book. Wolfram Media, Inc.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno