Ir al contenido

Documat


Data-Mining-based filtering to support Solar Forecasting Methodologies

  • PINTO, Tiago [1] Árbol académico ; MARQUES, Luis [2] ; SOUSA, Tiago M [2] ; PRAÇA, Isabel [2] ; VALE, Zita [2] Árbol académico ; ABREU, Samuel L [3]
    1. [1] Universidad de Salamanca

      Universidad de Salamanca

      Salamanca, España

    2. [2] GECAD - Polytechnic of Porto
    3. [3] General – Alternative Energies Group - IFSC – Instituto Federal de Santa Catarina
  • Localización: ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal, ISSN-e 2255-2863, Vol. 6, Nº. 3, 2017, págs. 85-102
  • Idioma: inglés
  • DOI: 10.14201/ADCAIJ20176385102
  • Enlaces
  • Resumen
    • This paper proposes an hybrid approach for short term solar intensity forecasting, which combines different forecasting methodologies with a clustering algorithm, which plays the role of data filter, in order to support the selection of the best data for training. A set of methodologies based on Artificial Neural Networks (ANN) and Support Vector Machines (SVM), used for short term solar irradiance forecast, is implemented and compared in order to facilitate the selection of the most appropriate methods and respective parameters according to the available information and needs. Data from the Brazilian city of Florianópolis, in the state of Santa Catarina, has been used to illustrate the methods applicability and conclusions. The dataset comprises the years of 1990 to 1999 and includes four solar irradiance components as well as other meteorological variables, such as temperature, wind speed and humidity. Conclusions about the irradiance components, parameters and the proposed clustering mechanism are presented. The results are studied and analysed considering both efficiency and effectiveness of the results. The experimental findings show that the hybrid model, combining a SVM approach with a clustering mechanism, to filter the data used for training, achieved promising results, outperforming the approaches without clustering.

  • Referencias bibliográficas
    • Alessandrini, S. Delle Monache, L. Sperati, S. Cervone, G. An analog ensemble for short-term probabilistic solar power forecast, Applied Energy,...
    • Badescu, V. “Modeling solar radiation at the earth surface”, Springer (2008).
    • Barzin, R., Chen, J.J. Young, B.R., Farid, M.M., “Application of weather forecast in conjunction with price-based method for PCM solar passive...
    • Bian, W.; Chen, X., "Neural Network for Nonsmooth, Nonconvex Constrained Minimization Via Smooth Approxima-tion," Neural Networks...
    • Boser, B.E., Guyon, I.M., Vapnik, V.N., "A Training algorithm for optimal margin classifiers", COLT conference, 1992.
    • Chicco G., Ilie S., “Support Vector Clustering of Electrical Load Pattern Data”. IEEE Transactions on Power Systems, vol.24, no.3, pp.1619-1628,...
    • Diagne, M., David, M., Lauret, P., Boland, J., Schmutz, N., “Review of solar irradiance forecasting methods and a propo-sition for small-scale...
    • Dianhui W.; Tapan, S., "A Robust Elicitation Algorithm for Discovering DNA Motifs Using Fuzzy Self-Organizing Maps," Neural Networks...
    • European Commissison, ”The 2020 climate and energy package ”. Available at http://ec.europa.eu/clima/policies/package/index_en.htm , last...
    • Fisher, R., “The use of multiple measurements in taxonomic problems. Annals of Eugenics”, 7, 111–132, 1936.
    • Gupta, R., Gupta, G.; Kastwar, D.; Hussain, A.; Ranjan, H.; ”Modeling and design of MPPT controler for a PV model us-ing PSCAD/EMTDC”. Innovative...
    • Han, J. and Kamber, M. “Data mining: concepts and techniques”. The Morgan Kaufmann series in data management sys-tems, San Francisco, 2006.
    • Hao Q; Srinivasan, D.; Khosravi, A., "Short-Term Load and Wind Power Forecasting Using Neural Network-Based Pre-diction Intervals,"...
    • Hocaoglu, F.O., Serttas, F., A novel hybrid (Mycielski-Markov) model for hourly solar radiation forecasting, Renewable Energy, Volume 108,...
    • Huynh T. Q. and Reggia J. A., “Symbolic Representation of Recurrent Neural Network Dynamics,” IEEE Trans. Neural Networks Learn. Syst., vol....
    • Hyndman, J., Koehler, B., “Another look at measures of forecast accuracy. International journal of forecasting”, 22 (4), 679-688, 2006.
    • Inman, Rich H., Pedro, Hugo T. C., Coimbra, Carlos R. M., “Solar forecasting methods for renewable energy integration”, Progress in Energy...
    • Ioakimidis, C., et al, “Solar Production Forecasting Based on Irradiance Forecasting Using Artificial Neural Networks”, 39th Annual Conference...
    • Jain A. K.. “Data Clustering: 50 years beyond K-Means”. Pattern Recognition Letters, Elsevier, Vol. 31, Issue 8, pp.651-666, June 2010.
    • Jain, A. K., Murty M. N. and Flynn, P. J. (1999) Data Clustering: A Review. In: ACM Computing Surveys, 31 (3). pp. 264-323.
    • Keles, D., Scelle, J., Paraschiv, F., Fichtner, W., Extended forecast methods for day-ahead electricity spot prices applying artificial neural...
    • Kopp, G. and Lean, J. L., A new, lower value of total solar irradiance: Evidence and climate significance, Geophysical Research Letters, VOL....
    • Liu, H., Tian, H., Liang, X., Li, Y. “Wind speed forecasting approach using secondary decomposition algorithm and Elman neural networks”,...
    • Liu, N., Tang, Q., Zhang, J., Fan, W., Liu, J. “A hybrid forecasting model with parameter optimization for short-term load forecasting of...
    • Martin, L. Zarzalejo, L. Polo, J. Navarro, A. Marchante, R. Cony, M. “Prediction of global solar irradiance based on time series analysis:...
    • Mohanty, S., Patra, P. K., Sahoo, S. S., Mohanty, A. “Forecasting of solar energy with application for a growing economy like India: Survey...
    • Nikulin, M.S., "Loss function", in Hazewinkel, Michiel, Encyclopedia of Mathematics, Springer, 2001.
    • Paolik C, Voyant C, Muselli M, Nivet M. Solar radiation forecasting using ad-hoc time series preprocessing and neural networks. In: Proceeding...
    • Pedro H. T. C. and Coimbra, C. F. M. “Assessment of forecasting techniques for solar power production with no exoge-nous inputs”, Solar Energy,...
    • Pelland, S., Remund, J., Kleissl, J., Oozeki, T., De Brabandere, K. “Photovoltaic and Solar Forecasting: State of the Art”, International...
    • Persson, C. Bacher, P. Shiga,T., Madsen, H. “Multi-site solar power forecasting using gradient boosted regression trees”, Solar Energy, Volume...
    • Pinto, T. , Ramos, S., Sousa, T. M., Vale, Z. "Short-term wind speed forecasting using Support Vector Machines", 2014 IEEE Symposium...
    • Pinto, T. et. al, "Solar Intensity Characterization using Data-Mining to support Solar Forecasting", 12th International Con-ference...
    • Pinto, T., Sousa, T.M., Praça, I., Vale, Z., Morais,H. Support Vector Machines for decision support in electricity markets? strategic bidding,...
    • Schwaegerl, C. and Tao, L. (2013) The Microgrids Concept, in Microgrids: Architectures and Control (ed N. Hatziar-gyriou), John Wiley and...
    • Sharma N., Sharma, P., Irwin, D., and Shenoy, P. “Predicting Solar Generation from Weather Forecasts Using Machine Learning”, IEEE International...
    • Singh, V.P., Vijay, V., Bhatt, M. S., Chaturvedi, D. K. “Generalized neural network methodology for short term solar power forecasting”, IEEE...
    • Sioshansi, F.P., “Evolution of Global Electricity Markets – New paradigms, new challenges, new approaches”, Academic Press, 2013
    • Smola, A.,Schölkopf, B. “A tutorial on support vector regression”, Statistics and Computing, 14, 199–222, 2004. Vapnik, V., A. Lerner, A.,...
    • Voyant, C. et al, Machine learning methods for solar radiation forecasting: A review, Renewable Energy, Volume 105, May 2017, Pages 569-582...
    • Xu, R., Chen, H. and Sun, X.“Short-term Photovoltaic Power Forecasting with Weighted Support Vector Machine”, IEEE International Conference...
    • Zeng, J., Qiao, W. “Short-term solar power prediction using a support vector machine”, Renewable Energy, Elsevier, vol. 52, pp. 118-127, 2013....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno