Ir al contenido

Documat


Malware propagation in Wireless Sensor Networks: global models vs Individual-based models

  • MARTÍN DEL REY, Ángel [1] ; BATISTA, F. K. [1] ; QUEIRUGA DIOS, A. [1]
    1. [1] Universidad de Salamanca

      Universidad de Salamanca

      Salamanca, España

  • Localización: ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal, ISSN-e 2255-2863, Vol. 6, Nº. 3, 2017, págs. 5-15
  • Idioma: inglés
  • DOI: 10.14201/ADCAIJ201763515
  • Enlaces
  • Resumen
    • The main goal of this work is to propose a new framework to design a novel family of mathematical models to simulate malware spreading in wireless sensor networks (WSNs). An analysis of the proposed models in the scientific literature reveals that the great majority are global models based on systems of ordinary differential equations such that they do not consider the individual characteristics of the sensors and their local interactions. This is a major drawback when WSNs are considered. Taking into account the main characteristics of WSNs (elements and topologies of network, life cycle of the nodes, etc.) it is shown that individual-based models are more suitable for this purpose than global ones. The main features of this new type of malware propagation models for WSNs are stated.

  • Referencias bibliográficas
    • Al-Fuqaha, A., and Benhaddou, D., 2015. Wireless Sensor and Mobile Ad-Hoc Networks: Vehicular and Space Applications. Springer, NY. Akyildiz,...
    • Dorca Josa, A., Serra-Ruiz, J., 2014. Implementación de un ataque DoS a redes WPAN 802.15.4. Actas de la XIII Reunión Española sobre Criptología...
    • Dos Santos, J., Hennebert C. and Lauradoux, C., 2015. Preserving privacy in secured ZigBee wireless sensor networks. Proceedings of the 2015...
    • Fahmy, H.M.A., 2016. Wireless Sensor Networks. Concepts, Applications, Experimentation and Analysis. Springer, Singapore.
    • Ferrer, J., Prats, C., López, D. Valls, J., and Gargallo, D., 2010. Contribution of Individual-based Models in malaria elimination strategy...
    • Flores Carbajal E. E., 2012. Red de sensores inalámbricas aplicado a la medicina - Master’s thesis, Escuela Técnica Superior de Ingenieros...
    • Karyotis, V., and Khouzani, M.H.R., 2016. Malware Diffusion Models for Modern Complex Networks. Theory and Applications, Morgan Kaufmann,...
    • Kermack, W. O., and McKendrick, A. G., 1927. A Contribution to the Mathematical Theory of Epidemics. Proceedings of the Royal Society of London...
    • Martín del Rey, A., 2015. Mathematical modeling of the propagation of malware: a review. Secure and Communication Networks 8(15): 2561-2579.
    • Mohammadi, S., Atani, R. and Jadidoleslamy, H., 2011. A Comparison of Link Layer Attacks on Wireless Sensor Networks. Jour-nal of Information...
    • Oreku, G.S., and Pazynyuk, T., 2016. Security in Wireless Sensor Networks. Springer.
    • Peng, S., Yu, S., and Yang, A., 2014. Smartphone Malware and Its Propagation Modeling: A Survey. IEEE Communications Sur-veys & Tutorials...
    • Queiruga-Dios, A., Hernández Encinas, A., and Martín-Vaquero, J., 2016. Malware Propagationn in Wireless Sensor Networks: A Review, in: E....
    • Raghu Vamsi, P. and Kant, K., 2016. Detecting Sybil Attacks in Wireless Sensor Networks Using Sequential Analysis. International Journal on...
    • Railsback, S.F., and Grimm, V., 2011. Agent-Based and Individual-Based Modeling: A Practical Introduction. Princeton University Press, Princeton,...
    • Selmic, R. R., Phoha, V. V., and Serwadda, A., 2016. Wireless Sensor Networks - Security, Coverage, and Localization (1 ed.). Springer.
    • Smieszek, T., Balmer, M., Hattendorf, J., Axhausen, K.W., Zinsstag, J., and Scholz, R.W., 2011. Reconstruction the 2003/2004 H3N2 influenza...
    • Sun, L., Ma, H., Fang, D., Niu, J., and Wang, W. (Eds.), 2015. Advances in Wireless Sensor Networks vol. 501, Springer.
    • Uchmanski, K., and Grimm, V., 1996. Individual based modelling in ecology: what makes the difference? Trends in Ecology and Evolution 12:...
    • Wang, X., He, Z., Zhao, X., Lin, C., Pan, Y., and Cai, Z., 2013. Reaction-diffusion modeling of malware propagation in mobile wireless sensor...
    • Wang, Y., Wen, S., Xiang, Y., and Zhou, W., 2014. Modeling the Propagation of Worms in Networks: A Survey. IEEE Communi-cations Surveys &...
    • Wolfram, S., 1992. A New Kinf od Science. Wolfram Media, Champaign, IL.
    • Yang, S.H., 2014. Wireless Sensor Networks. Principles, Design and Applications. Springer, London.
    • Zema, N.R., Natalizio, E., Poss, M., Ruggeri, G., Molinaro, A., 2014. Healing wireless sensor networks from malicious epidemic diffusion....
    • Zhao, F., and Guibas, L.J., 2004. Wireless Sensor Networks. An Information Processing Approach. Morgan Kaufmann, San Fran-cisco, CA.
    • Zu, L., and Zhao, H., 2015. Dynamical analysis and optimal control for malware propagation model in an information network. Neurocomputing...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno