Ir al contenido

Documat


Every Period Annulus is Both Reversible and Symmetric

  • Marco Sabatini [1]
    1. [1] Università di Trento (Italia)
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 16, Nº 1, 2017, págs. 175-185
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We prove that for every planar differential system with a period annulus there exists a unique involution σ such that the system is σ-symmetric. We also prove that, given a system with a period annulus and a global section δ, there exist a unique involution σ such that the system is σ-reversible and δ is the fixed points curve of σ. As a consequence, every system with a period annulus admits infinitely many reversibilities.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno