Ir al contenido

Documat


Soluciones positivas y soluciones con frontera libre para ecuaciones singulares

  • Autores: Juan Dávila, Marcelo Montenegro
  • Localización: Integración: Temas de matemáticas, ISSN 0120-419X, Vol. 28, Nº. 2, 2010 (Ejemplar dedicado a: Revista Integración), págs. 85-100
  • Idioma: español
  • Títulos paralelos:
    • Remarks on positive and free boundary solutions to a singular equation
  • Enlaces
  • Resumen
    • español

      La ecuación −∆u = χ{u>0} (− 1/(u^β) + λf(x, u) en ∂Ω con condición de frontera de tipo Dirichlet en ∂Ω posee una solución uλ ≥ 0 para λ > 0. Si λ es menor que una constante λ ∗ la solución es nula dentro de una región del dominio, y para λ > λ∗ la solución es positiva y estable. Obtenemos la regularidad óptima de uλ aun con la frontera libre. Si 0 < λ < λ∗ las soluciones de la ecuación parabólica singular ut − ∆u + 1/(u^β) = λf(u) son nulas en tiempo finito, y para λ > λ∗ las soluciones son positivas y globalmente definidas. Palabras claves: Ecuaciones singulares, frontera libre.

    • English

      The equation −∆u = χ{u>0} (− 1/(u^β) + λf(x, u) in Ω with Dirichlet boundary condition on ∂Ω has a maximal solution uλ ≥ 0 for every λ > 0. For λ less than a constant λ ∗ the solution vanishes inside the domain, and for λ > λ∗ the solution is positive and stable. We obtain optimal regularity of uλ even in the presence of the free boundary. If 0 < λ < λ∗ the solutions of the singular parabolic equation ut − ∆u + 1/(u^β) = λf(u) quench in finite time, and for λ > λ∗ the solutions are globally positively defined.

       

  • Referencias bibliográficas
    • Citas [1] Aris R., The Mathematical Theory of Diffusion and Reaction in Permeable Catalysts, Clarendon Press, Oxford University press, England,...
    • [2] Brezis H., Cazenave T., Martel Y., and Ramiandrisoa A., “Blow-up for ut − ∆u = g(u) revisited”, Adv. Differential Equations, 1 (1996),...
    • [3] Brezis H. and Marcus M., “Hardy’s inequalities revisited”, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 25 (1998), 217–237.
    • Choi Y.S., Lazer A.C., and McKenna P.J., “Some remarks on a singular elliptic boundary value problem”, Nonlinear Anal., 32 (1998), 305–314.
    • [5] Crandall M.G., Rabinowitz P.H and Tartar L., “On a Dirichlet problem with a singular nonlinearity”, Comm. Partial Differential Equations,...
    • [6] Dávila J. and Montenegro M., “Radial solutions of an elliptic equation with singular nonlinearity”, J. Math. Anal. Appl., 352 (2009),...
    • [7] Dávila J., “Global regularity for a singular equation and local H1 minimizers of a nondifferentiable
    • functional”, Commun. Contemp. Math., 6 (2004), 165–193.
    • [8] Dávila J. and Montenegro M., “Existence and asymptotic behavior for a singular parabolic equation”, Trans. Amer. Math. Soc., 357 (2005),...
    • [9] Dávila J. and Montenegro M., “Concentration for an elliptic equation with singular nonlinearity”, to appear in J. Math. Pures Appl., (2011),...
    • [10] Díaz J.I., Nonlinear partial differential equations and free boundaries. Vol. I. Elliptic equations. Research Notes in Mathematics, 106....
    • [11] Díaz J.I., Morel J.M., and Oswald L., “An elliptic equation with singular nonlinearity”, Comm. Partial Differential Equations, 12 (1987),...
    • [12] Giaquinta M. and Giusti E., “Sharp estimates for the derivatives of local minima of variational integrals”, Boll. Un. Mat. Ital. A, 3...
    • [13] Gui C. and Lin F.H., “Regularity of an elliptic problem with a singular nonlinearity”, Proc. Roy. Soc. Edinburgh Sect. A, 123 (1993),...
    • [14] Martel Y., “Uniqueness of weak extremal solutions of nonlinear elliptic problems”, Houston J. Math., 23 (1997), 161–168.
    • [15] Mignot F. and Puel J.P., “Sur une classe de problèmes non linéaires avec non linéairité positive, croissante, convexe”, Comm. Partial...
    • [16] Montenegro M. and Queiroz O., “Existence and regularity to an elliptic equation with logarithmic nonlinearity”, J. Differential Equations,...
    • [17] Phillips D., “A minimization problem and the regularity of solutions in the presence of a free boundary”, Indiana Univ. Math. J., 32...
    • [18] Shi J. and Yao M., “On a singular nonlinear semilinear elliptic problem”, Proc. Roy. Soc. Edinburgh Sect. A, 128 (1998), 1389–1401.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno