Ir al contenido

Documat


The Hoffmann–Jørgensen inequality in metric semigroups

  • Apoorva Khare [1] ; Bala Rajaratnam [1]
    1. [1] Stanford University

      Stanford University

      Estados Unidos

  • Localización: Annals of probability: An official journal of the Institute of Mathematical Statistics, ISSN 0091-1798, Vol. 45, Nº. 6, 1, 2017, págs. 4101-4111
  • Idioma: inglés
  • DOI: 10.1214/16-AOP1160
  • Enlaces
  • Resumen
    • We prove a refinement of the inequality by Hoffmann–Jørgensen that is significant for three reasons. First, our result improves on the state-of-the-art even for real-valued random variables. Second, the result unifies several versions in the Banach space literature, including those by Johnson and Schechtman [Ann. Probab. 17 (1989) 789–808], Klass and Nowicki [Ann. Probab. 28 (2000) 851–862], and Hitczenko and Montgomery-Smith [Ann. Probab. 29 (2001) 447–466]. Finally, we show that the Hoffmann–Jørgensen inequality (including our generalized version) holds not only in Banach spaces but more generally, in a very primitive mathematical framework required to state the inequality: a metric semigroup GG. This includes normed linear spaces as well as all compact, discrete or (connected) abelian Lie groups.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno