Ir al contenido

Documat


Tratamiento analítico de la bifurcación de hopf en una extensión del sistema de lü

  • Autores: Pablo Emilio Calderón Saavedra, Evodio Muñoz Aguirre, Jorge Álvarez Mena
  • Localización: Revista de Matemática: Teoría y Aplicaciones, ISSN 2215-3373, ISSN-e 2215-3373, Vol. 25, Nº. 1, 2018, págs. 29-40
  • Idioma: español
  • DOI: 10.15517/rmta.v1i25.32230
  • Títulos paralelos:
    • Analytical treatment of the hopf bifurcation in an extension of the lü system
  • Enlaces
  • Resumen
    • español

      En este artículo se hace un análisis de la bifurcación de Hopf del sistema tridimensional tipo Lorenz introducido por Xianyi Li y Qianjun Ou (2011), este análisis consiste en identificar una región de parámetros del sistema donde la bifurcación de Hopf es no degenerada y supercrítica, aspecto que no es abordado en el artículo de Xianyi Li y Qianjun Ou. Para lograr este objetivo se utiliza el Teorema de la Variedad Central y el Teorema de Hopf. Además, para ilustrar los resultados, se muestran gráficas de algunas trayectorias del sistema, las cuales fueron obtenidas mediantesimulación numérica.

    • English

      In this paper, we analyze Hopf Bifurcation of the three-dimensional Lorenz-like system introduced by Xianyi Li and Qianjun Ou (2011), this analysis consists of identifying a parameter region, in which the nondegenerate and supercritical Hopf bifurcation occurs, situation that is not discussed by Xianyi Li and Qianjun Ou. To achieve this purpose, we use the Center Manifold Theorem and the Hopf Theorem. In addition, to illustrate the results, the graphics of some trayectories of the system are shown, which were obtained via numerical simulations.

  • Referencias bibliográficas
    • Algaba, A.; Domínguez, M.; Merino, M.; Rodríguez, A.L. (2015) “Study of the Hopf bifurcation in the Lorenz, Chen and Lü systems", Nonlinear...
    • Algaba, A.; Fernández-Sánchez, F.; Merino, M.; Rodríguez, A.L. (2014) “Centers on center manifolds in the Lorenz, Chen and Lü systems",...
    • Algaba, A.; Fernández-Sánchez, F.; Merino, M.; Rodríguez, A.L. (2013) “The Lü systems is a particular case of the Lorenz system", Physical...
    • Castellanos, V.; Blé, G.; Llibre, J. (2016) “Existence of limit cicles in a tritrophic food chain model with holling functional responses...
    • Chen, C.-T. (1994) System and Signal Analysis. Oxford University Press, New York.
    • Chen, G.; Lü, J. (2003) “Dynamics of the Lorenz family: analysis, control and synchronization", Chinese Science Press, Beijing 00(1):...
    • Chen, G.; Lü, J.; Cheng, D. (2004) “A new chaotic system and beyond: The generalized Lorenz-like system", International Journal of Bifurcation...
    • Chen, G.; Oi, G. (2005) “Analysis of a new chaotic system", Physical A: Statistical Mechanics and Its Applications 352(2): 295–308.
    • Dutta, T.K.; Prajapati, P.; Haloi, S. (2016) “Supercritical and subcritical hopf bifurcations in non linear maps", International Journal...
    • Guckenheimer, J.; Holemes, P. (1990) “Nonlinear oscillations dynamical systems and bifurcations of vectors fields”, Ithaca, Fall.
    • Kuznetsov, Y. A. (2004) Elements of Applied Bifurcation Theory, third edition. Springer-Verlag, New York.
    • Li, H.; Wang, M. (2013) “Hopf bifurcation analysis in a Lorenz-type systems", Nonlinear Dynamical 71(1): 235–240.
    • Li, X.; Ou, Q. (2011) “Dynamical properties and simulation of a new Lorenz-like chaotic system", Nonlinear Dynamical 65(3): 255–270.
    • Liao, X.; Wang, L.; Yu, P. (2007) Stability of Dynamical Systems. London, Canada.
    • Lorenz, E. (1963) “Deterministic nonperiodic flow", J. Atmos. Sci. 20(2): 130–141.
    • Pehlivan, I.; Uyaroglu, Y. (2010) “A new chaotic attractor from general Lorenz system family and its electronic experimental implementation",...
    • Perko, L. (2000) Differential Equations and Dynamical Systems, third edition. Springer-Verlag, New York.
    • Pyragas, K. (2006) “Delayed feedback control of chaos", Phil. Trans. R. soc. A. 364(1846): 2309–2334.
    • Soon Tee, L.; Salleh, Z. (2013) “Dynamical analysis of a modified Lorenz system", Hindawwi Publishing Corporation Journal of Mathematics...
    • Sotomayor, J.; Melo, L.; Braga, D. (2006) Stability and Hopf Bifurcation in the Watt Governor Systems. Cornell University Library, orXiv:...
    • Tian, Y.-P. (2012) Frequency-Domain Analysis and Desing of Distributed Control Systems. Wiley-IEEE Press.
    • Yan, Z. (2007) “Hopf bifurcation in the Lorenz-type chaotic system", Chaos, Solitons & Fractals 31(5): 1135–1142.
    • Yu, P.; Lü, J. (2010) “Bifurcation control for a class of Lorenz-like systems", International Journal of Bifurcation and Chaos 21(9):...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno