Zheng Chen, Alexander Stasinsk
In this paper we study higher Deligne–Lusztig representations of reductive groups over finite quotients of discrete valuation rings. At even levels, we show that these geometrically constructed representations, defined by Lusztig, coincide with certain explicit induced representations defined by Gérardin, thus giving a solution to a problem raised by Lusztig. In particular, we determine the dimensions of these representations. As an immediate application we verify a conjecture of Letellier for GL2 and GL3.
© 2008-2025 Fundación Dialnet · Todos los derechos reservados