Ir al contenido

Documat


Resumen de On the exponent of convergence of negatively curved manifolds without Green’s function

María Victoria Melián Árbol académico, José Manuel Rodríguez García Árbol académico, Eva Tourís Árbol académico

  • In this paper we prove that for every complete n-dimensional Riemannian manifold without Green’s function and with its sectional curvatures satisfying K ≤−1, the exponent of convergence is greater than or equal to n − 1. Furthermore, we show that this inequality is sharp. This result is well known for manifolds with constant sectional curvatures K = −1.


Fundación Dialnet

Mi Documat