Ir al contenido

Documat


Bounding smooth solutions of Bezout equations

  • Nikolai Nikolski [1]
    1. [1] University of Bourdeaux 1
  • Localización: Mathematica scandinavica, ISSN 0025-5521, Vol. 121, Nº 1, 2017, págs. 121-143
  • Idioma: inglés
  • DOI: 10.7146/math.scand.a-26387
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Given data f=(f1,f2,…,fn) in the holomorphic part A=F+ of a symmetric Banach\slash topological algebra F on the unit circle T, we estimate solutions gj∈A to the corresponding Bezout equation ∑nj=1gjfj=1 in terms of the lower spectral parameter δ, 0<δ≤|f(z)|, and an inversion controlling function c1(δ,F) for the algebra F. A scheme developed issues from an analysis of the famous Uchiyama-Wolff proof to the Carleson corona theorem and includes examples of algebras of “smooth” functions, as Beurling-Sobolev, Lipschitz, or Wiener-Dirichlet algebras. There is no real “corona problem” in this setting, the issue is in the growth rate of the upper bound for ∥g∥An as δ→0 and in numerical values of the quantities that occur, which are determined as accurately as possible.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno