Let X and Y be topological space and F(X,Y) the set of all functions from X into Y. We study various quasi-uniform convergence topologies U_{A} (A⊆P(X)) on F(X,Y) and their comparison in the setting of Y a quasi-uniform space. Further, we study U_{A}-closedness and right K-completeness properties of certain subspaces of generalized continuous functions in F(X,Y) in the case of Y a locally symmetric quasi-uniform space or a locally uniform space.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados