Ir al contenido

Documat


Weighted Lp estimates of Kato square roots associated to degenerate elliptic operators

  • Autores: Dachun Yang, Junqiang Zhang
  • Localización: Publicacions matematiques, ISSN 0214-1493, Vol. 61, Nº 2, 2017, págs. 395-444
  • Idioma: inglés
  • DOI: 10.5565/327586
  • Enlaces
  • Resumen
    • Let w be a Muckenhoupt A2(Rn) weight and Lw := −w−1 div(A∇) the degenerate elliptic operator on the Euclidean space Rn, n ≥ 2. In this article, the authors establish some weighted Lp estimates of Kato square roots associated to the degenerate elliptic operators Lw. More precisely, the authors prove that, for w ∈ Ap(Rn), p ∈ (2n n+1 , 2] and any f ∈ C∞c (Rn), kL 1/2 w (f)kLp(w,Rn) ∼ k∇fkLp(w,Rn), where C∞c (Rn) denotes the set of all infinitely differential functions with compact supports and the implicit equivalent positive constants are independent of f.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno