Ir al contenido

Documat


Un Recorrido de Estudio e Investigación para el aprendizaje del concepto devariable aleatoria discreta mediante métodos de Monte Carlo

  • Autores: Vicente Domingo Estruch Fuster Árbol académico, Francisco José Boigues Planes, Anna Vidal Meló
  • Localización: Modelling in Science Education and Learning, ISSN-e 1988-3145, Vol. 10, Nº. 2, 2017, págs. 67-84
  • Idioma: español
  • DOI: 10.4995/msel.2017.6561
  • Títulos paralelos:
    • A Research and Study Course for learning the concept of discrete randomvariable using Monte Carlo methods
  • Enlaces
  • Resumen
    • español

      El concepto de variable aleatoria es un constructo matemático que presenta cierta complejidad teórica.  No obstante, el aprendizaje de dicho concepto puede facilitarse si se plantea como el   final de un proceso secuencial de modelización de un suceso real.  Más concretamente, para aprender el concepto de variable aleatoria discreta, la simulación de Monte Carlo puede ofrecer una herramienta sumamente útil puesto que en el proceso de modelización/simulación podremos abordar el concepto teórico de variable aleatoria, al tiempo que se observa a la variable aleatoria “en acción”. Este trabajo expone un Recorrido de Estudio e Investigación (REI) basado en una serie de actividades relacionadas con variables aleatorias como entrenamiento e introducción de elementos de simulación, presentándose después la construcción de un modelo, que es la parte substancial de la actividad, generando una variable aleatoria y su función de probabilidad. Partiendo de una situación sencilla, relacionada con la reproducción y supervivencia de la camada de un roedor, con componentes aleatorios, se construye, paso a paso, el modelo que representa la situación planteada mediante una variable aleatoria "original". En las etapas intermedias de la construcción del modelo tienen un papel fundamental las distribuciones uniforme discreta y binomial. El recorrido de tales etapas permite reforzar el concepto de variable aleatoria al tiempo que se exploran las posibilidades que ofrecen los métodos de Monte Carlo para simular casos reales y se comprueba la sencillez que supone implementar dichos métodos mediante el lenguaje de programación de Matlab©.

    • English

      The concept of random variable is a mathematical construct that presents some theoretical complexity. However, learning  this  concept  can  be  facilitated  if  it  is  presented  as  the  end  of  a  sequential  process  of  modeling  of  a  real event. More specifically, to learn the concept of discrete random variable, the Monte Carlo simulation can provide an extremely useful tool because in the process of modeling / simulation one can approach the theoretical concept of random variable, while the random variable is observed \in action". This paper presents a Research and Study Course  (RSC)  based  on  series  of  activities  related  to  random  variables  such  as  training  and  introduction  of  simulation  elements,  then  the  construction  of  the  model  is  presented,  which  is  the  substantial  part  of  the  activity, generating a random variable and its probability function. Starting from a simple situation related to reproduction and  survival  of  the  litter  of  a  rodent,  with  random  components,  step  by  step,  the  model  that  represents  the  real raised situation is built obtaining an \original" random variable. In the intermediate stages of the construction of the model have a fundamental role the uniform discrete and binomial distributions. The trajectory of these stages allows reinforcing the concept of random variable while exploring the possibilities offered by Monte Carlo methods to  simulate  real  cases  and  the  simplicity  of  implementing  these  methods  by  means  of  the  Matlab© programming language.

  • Referencias bibliográficas

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno