Ir al contenido

Documat


The irreducibility of power compositional sextic polynomials and their Galois groups

  • Joshua Harrington [1] ; Lenny Jones [2]
    1. [1] Cedar Crest College-USA
    2. [2] Shippensburg University-USA
  • Localización: Mathematica scandinavica, ISSN 0025-5521, Vol. 120, Nº 2, 2017, págs. 181-194
  • Idioma: inglés
  • DOI: 10.7146/math.scand.a-25850
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We define a power compositional sextic polynomial to be a monic sextic polynomial f(x):=h(xd)∈Z[x], where h(x) is an irreducible quadratic or cubic polynomial, and d=3 or d=2, respectively. In this article, we use a theorem of Capelli to give necessary and sufficient conditions for the reducibility of f(x), and also a description of the factorization of f(x) into irreducibles when f(x) is reducible. In certain situations, when f(x) is irreducible, we also give a simple algorithm to determine the Galois group of f(x) without the calculation of resolvents. The algorithm requires only the use of the Rational Root Test and the calculation of a single discriminant. In addition, in each of these situations, we give infinite families of polynomials having the possible Galois groups.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno