Ir al contenido

Documat


Adjusting for Misclassification: A Three-Phase Sampling Approach

  • Autores: Hailin Sang, Kenneth K. Lopiano, Denise A. Abreu, Andrea C. Lamas, Pam Arroway, Linda J. Young
  • Localización: Journal of official statistics, ISSN 0282-423X, Vol. 33, Nº. 1, 2017, págs. 207-222
  • Idioma: inglés
  • DOI: 10.1515/jos-2017-0011
  • Enlaces
  • Resumen
    • The United States Department of Agriculture’s National Agricultural Statistics Service (NASS) conducts the June Agricultural Survey (JAS) annually. Substantial misclassification occurs during the prescreening process and from field-estimating farm status for nonresponse and inaccessible records, resulting in a biased estimate of the number of US farms from the JAS. Here, the Annual Land Utilization Survey (ALUS) is proposed as a follow-on survey to the JAS to adjust the estimates of the number of US farms and other important variables. A three-phase survey design-based estimator is developed for the JAS-ALUS with nonresponse adjustment for the second phase (ALUS). A design-unbiased estimator of the variance is provided in explicit form.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno