Ir al contenido

Documat


Bubbling solutions for nonlocal elliptic problems

  • Juan Dávila [1] ; Luis López Ríos [2] ; Yannick Sire [3] Árbol académico
    1. [1] Universidad de Chile

      Universidad de Chile

      Santiago, Chile

    2. [2] Universidad de Buenos Aires

      Universidad de Buenos Aires

      Argentina

    3. [3] Université d' Aix-Marseille
  • Localización: Revista matemática iberoamericana, ISSN 0213-2230, Vol. 33, Nº 2, 2017, págs. 509-546
  • Idioma: inglés
  • DOI: 10.4171/RMI/947
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We investigate bubbling solutions for the nonlocal equation AsΩu=up, u>0in Ω, under homogeneous Dirichlet conditions, where Ω is a bounded and smooth domain. The operator AsΩ stands for two types of nonlocal operators that we treat in a unified way: either the spectral fractional Laplacian or the restricted fractional Laplacian. In both cases s∈(0,1), and the Dirichlet conditions are different: for the spectral fractional Laplacian, we prescribe u=0 on ∂Ω, and for the restricted fractional Laplacian, we prescribe u=0 on Rn∖Ω. We construct solutions when the exponent p=(n+2s)/(n−2s)±ϵ is close to the critical one, concentrating as ϵ→0 near critical points of a reduced function involving the Green and Robin functions of the domain.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno